Multi-spectral tactical integrated scene generation capability using satellite imagery

被引:0
|
作者
Coker, Charles [1 ]
Willis, Carla [1 ]
Lt Tan Van [1 ]
Smith, Brian [2 ]
Destin, Phillip [3 ]
机构
[1] US Air Force, Res Lab, Munit Directorate, Eglin AFB, FL 32542 USA
[2] GSES L 3 Serv Inc, Shalimar, FL 32579 USA
[3] DCS Corp, Shalimar, FL 32579 USA
关键词
tactical; scene generation; geo-referenced; satellite; radiance; imagery;
D O I
10.1117/12.852342
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A multi-spectral tactical integrated scene generation capability using satellite terrain imagery is currently available using a synthetic predictive simulation code developed by the Munitions Directorate of the Air Force Research Laboratory (AFRL/RWGGS). This capability produces multi-spectral integrated scene imagery from the perspective of a sensor/seeker for an air-to-ground scenario using geo-referenced U.S. Geological Survey (USGS) Digital Terrain Elevation Data (DTED) and satellite terrain imagery. The produced imagery is spatially, spectrally, and temporally accurate. Using surveillance flight path and viewing angle, this capability has been interfaced with Microsoft Virtual Earth to extract terrain data of interest at the needed background resolution.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Road detection from multi-spectral satellite imagery
    Wang, Jinfei
    Liu, Wenhong
    Canadian Journal of Remote Sensing, 1994, 20 (02) : 180 - 191
  • [2] Retrieval using texture features in high resolution multi-spectral satellite imagery
    Newsam, SD
    Kamath, C
    DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY VI, 2004, 5433 : 21 - 32
  • [3] Generation of multi-spectral scene images for ocean environment
    Wang, Changbo
    Jia, Kun
    Huang, Qi
    Xia, Yan
    MIPPR 2007: MULTISPECTRAL IMAGE PROCESSING, 2007, 6787
  • [4] Crop Classification using Multi-spectral and Multi-temporal Satellite Imagery with Machine Learning
    Viskovic, Lucija
    Kosovic, Ivana Nizetic
    Mastelic, Toni
    2019 27TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2019, : 88 - 92
  • [5] A multi-spectral spatial convolution approach of rainfall forecasting using weather satellite imagery
    Wei, Chiang
    Hung, Wei-Chun
    Cheng, Ke-Sheng
    NATURAL HAZARDS AND OCEANOGRAPHIC PROCESSES FROM SATELLITE DATA, 2006, 37 (04): : 747 - 753
  • [6] Detection of ZY-3 satellite platform jitter using multi-spectral imagery
    Zhu, Ying
    Wang, Mi
    Pan, Jun
    Hu, Fen
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2015, 44 (04): : 399 - 406
  • [7] Invariant scene analysis using multi-spectral information
    Sadjadi, F
    FUSION'98: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MULTISOURCE-MULTISENSOR INFORMATION FUSION, VOLS 1 AND 2, 1998, : 59 - 64
  • [8] Rethinking Transformers Pre-training for Multi-Spectral Satellite Imagery
    Noman, Mubashir
    Naseer, Muzammal
    Cholakkal, Hisham
    Anwar, Rao Muhammad
    Khan, Salman
    Khan, Fahad Shahbaz
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 27811 - 27819
  • [9] Cross-sensor transfer learning for fire smoke scene detection using variable-bands multi-spectral satellite imagery aided by spectral patterns
    Zhao, Liang
    Liu, Jixue
    Peters, Stefan
    Li, Jiuyong
    Mueller, Norman
    Oliver, Simon
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (10) : 3332 - 3348
  • [10] A New Remote Sensing Index for Forest Dryness Monitoring Using Multi-Spectral Satellite Imagery
    Le, Thai Son
    Dell, Bernard
    Harper, Richard
    FORESTS, 2024, 15 (06):