Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects

被引:22
|
作者
Dhote, R. P. [1 ]
Gomez, H. [3 ]
Melnik, R. N. V. [2 ]
Zu, J. [1 ]
机构
[1] Univ Toronto, Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
[2] Wilfrid Laurier Univ, MS2Discovery Interdisciplinary Res Inst, M2 NeT Lab, Waterloo, ON N2L 3C5, Canada
[3] Univ A Coruna, Dept Appl Math, La Coruna 15192, Spain
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
Phase-field model; Ginzburg-Landau theory; Nonlinear thermo-elasticity; PHASE-TRANSFORMATION FRONTS; BOUNDARIES; GROWTH;
D O I
10.1016/j.cpc.2015.02.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Employing the Ginzburg-Landau phase-field theory, a new coupled dynamic thermo-mechanical 3D model has been proposed for modeling the cubic-to-tetragonal martensitic transformations in shape memory alloy (SMA) nanostructures. The stress-induced phase transformations and thermo-mechanical behavior of nanostructured SMAs have been investigated. The mechanical and thermal hysteresis phenomena, local non-uniform phase transformations and corresponding non-uniform temperatures and deformations' distributions are captured successfully using the developed model. The predicted microstructure evolution qualitatively matches with the experimental observations. The developed coupled dynamic model has provided a better understanding of underlying martensitic transformation mechanisms in SMAs, as well as their effect on the thermo-mechanical behavior of nanostructures. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 50 条
  • [21] Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension
    Reza Mirzaeifar
    Reginald DesRoches
    Arash Yavari
    Continuum Mechanics and Thermodynamics, 2011, 23 : 363 - 385
  • [22] Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension
    Mirzaeifar, Reza
    DesRoches, Reginald
    Yavari, Arash
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2011, 23 (04) : 363 - 385
  • [23] Thermo-mechanical wave propagations in shape memory alloy rod with phase transformations
    Wang, L. X.
    Melnik, R. V. N.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2007, 14 (08) : 665 - 676
  • [24] Fatigue life of TiNiCu shape memory alloy under thermo-mechanical conditions
    Sakuma, T
    Iwata, U
    Kariya, N
    Ochi, Y
    EXPERIMENTAL MECHANICS, VOLS 1 AND 2: ADVANCES IN DESIGN, TESTING AND ANALYSIS, 1998, : 1121 - 1126
  • [25] Effect of laser microcutting on thermo-mechanical properties of NiTiCu shape memory alloy
    Biffi, Carlo Alberto
    Bassani, Paola
    Carnevale, Marco
    Lecis, Nora
    Loconte, Antonietta
    Previtali, Barbara
    Tuissi, Ausonio
    METALS AND MATERIALS INTERNATIONAL, 2014, 20 (01) : 83 - 92
  • [26] Effect of laser microcutting on thermo-mechanical properties of NiTiCu shape memory alloy
    Carlo Alberto Biffi
    Paola Bassani
    Marco Carnevale
    Nora Lecis
    Antonietta Loconte
    Barbara Previtali
    Ausonio Tuissi
    Metals and Materials International, 2014, 20 : 83 - 92
  • [27] Thermo-mechanical finite element analysis of a shape memory alloy cantilever beam
    Li, Qifu
    Seelecke, Stefan
    Kohl, M.
    Krevet, B.
    SMART STRUCTURES AND MATERIALS 2006: MODELING, SIGNAL PROCESSING, AND CONTROL, 2006, 6166 : U662 - U669
  • [28] Effects of thermo-mechanical treatment on a Fe-30Mn-6Si shape memory alloy
    Yang, C. H.
    Lin, H. C.
    Lin, K. M.
    Tsai, H. K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 497 (1-2): : 445 - 450
  • [29] Thermo-mechanical processing and the shape memory effect in an Fe-Mn-Si-based shape memory alloy
    Stanford, N
    Dunne, DP
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 422 (1-2): : 352 - 359
  • [30] Dynamic thermo-mechanical properties of evaporated TiNi shape memory thin film
    Makino, Eiji
    Shibata, Takayuki
    Kato, Kazuhiro
    Sensors and Actuators, A: Physical, 1999, 78 (02): : 163 - 167