MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins

被引:135
|
作者
Potenza, Emilio [1 ]
Di Domenico, Tomas [1 ]
Walsh, Ian [1 ]
Tosatto, Silvio C. E. [1 ]
机构
[1] Univ Padua, Dept Biomed Sci, I-35131 Padua, Italy
关键词
PREDICTION; COMPLEXITY; SEQUENCES; SERVER;
D O I
10.1093/nar/gku982
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MobiDB (ext-link-type="uri" xlink:href="http://mobidb.bio.unipd.it/" xlink:type="simple">http://mobidb.bio.unipd.it/) is a database of intrinsically disordered and mobile proteins. Intrinsically disordered regions are key for the function of numerous proteins. Here we provide a new version of MobiDB, a centralized source aimed at providing the most complete picture on different flavors of disorder in protein structures covering all UniProt sequences (currently over 80 million). The database features three levels of annotation: manually curated, indirect and predicted. Manually curated data is extracted from the DisProt database. Indirect data is inferred from PDB structures that are considered an indication of intrinsic disorder. The 10 predictors currently included (three ESpritz flavors, two IUPred flavors, two DisEMBL flavors, GlobPlot, VSL2b and JRONN) enable MobiDB to provide disorder annotations for every protein in absence of more reliable data. The new version also features a consensus annotation and classification for long disordered regions. In order to complement the disorder annotations, MobiDB features additional annotations from external sources. Annotations from the UniProt database include post-translational modifications and linear motifs. Pfam annotations are displayed in graphical form and are link-enabled, allowing the user to visit the corresponding Pfam page for further information. Experimental protein-protein interactions from STRING are also classified for disorder content.
引用
收藏
页码:D315 / D320
页数:6
相关论文
共 50 条
  • [41] Intrinsically disordered proteins as molecular shields
    Chakrabortee, Sohini
    Tripathi, Rashmi
    Watson, Matthew
    Schierle, Gabriele S. Kaminski
    Kurniawan, Davy P.
    Kaminski, Clemens F.
    Wise, Michael J.
    Tunnacliffe, Alan
    MOLECULAR BIOSYSTEMS, 2012, 8 (01) : 210 - 219
  • [42] Computer Simulations of Intrinsically Disordered Proteins
    Chong, Song-Ho
    Chatterjee, Prathit
    Ham, Sihyun
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 68, 2017, 68 : 117 - 134
  • [43] The dynamic function of intrinsically disordered proteins
    Milles S.
    BIOspektrum, 2023, 29 (4) : 351 - 353
  • [44] AlphaFold and Implications for Intrinsically Disordered Proteins
    Ruff, Kiersten M.
    Pappu, Rohit, V
    JOURNAL OF MOLECULAR BIOLOGY, 2021, 433 (20)
  • [45] The roles of intrinsically disordered proteins in neurodegeneration
    Utami, Kagistia Hana
    Morimoto, Satoru
    Mitsukura, Yasue
    Okano, Hideyuki
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2025, 1869 (04):
  • [46] Intrinsically Disordered Proteins in Chronic Diseases
    Kulkarni, Prakash
    Uversky, Vladimir N.
    BIOMOLECULES, 2019, 9 (04):
  • [47] Allosteric Modulation of Intrinsically Disordered Proteins
    Rehman, Ashfaq Ur
    Rahman, Mueed Ur
    Arshad, Taaha
    Chen, Hai-Feng
    PROTEIN ALLOSTERY IN DRUG DISCOVERY, 2019, 1163 : 335 - 357
  • [48] Intrinsically disordered regions in autophagy proteins
    Mei, Yang
    Su, Minfei
    Soni, Gaurav
    Salem, Saeed
    Colbert, Christopher L.
    Sinha, Sangita C.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2014, 82 (04) : 565 - 578
  • [49] Intrinsically disordered proteins: Chronology of a discovery
    Uversky, Vladimir N.
    Kulkarni, Prakash
    BIOPHYSICAL CHEMISTRY, 2021, 279
  • [50] Intrinsically disordered proteins (IDPs) in trypanosomatids
    Ruy, Patrcia de Cassia
    Torrieri, Raul
    Toledo, Juliano Simoes
    Alves, Viviane de Souza
    Cruz, Angela Kaysel
    Ruiz, Jeronimo Conceicao
    BMC GENOMICS, 2014, 15