Artificial Intelligence in Lung Cancer Pathology Image Analysis

被引:166
|
作者
Wang, Shidan [1 ]
Yang, Donghan M. [1 ]
Rong, Ruichen [1 ]
Zhan, Xiaowei [1 ]
Fujimoto, Junya [2 ]
Liu, Hongyu [1 ]
Minna, John [3 ,4 ,5 ]
Wistuba, Ignacio Ivan [2 ]
Xie, Yang [1 ,3 ,6 ]
Xiao, Guanghua [1 ,3 ,6 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Quantitat Biomed Res Ctr, Dept Populat & Data Sci, Dallas, TX 75390 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Harold C Simmons Comprehens Canc Ctr, Dallas, TX 75390 USA
[4] UT Southwestern Med Ctr, Hamon Ctr Therapeut Oncol Res, Dallas, TX 75390 USA
[5] Univ Texas Southwestern Med Ctr Dallas, Dept Internal Med & Pharmacol, Dallas, TX 75390 USA
[6] Univ Texas Southwestern Med Ctr Dallas, Dept Bioinformat, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
lung cancer; deep learning; pathology image; computer-aided diagnosis; digital pathology; whole-slide imaging; TUMOR-INFILTRATING LYMPHOCYTES; DIGITAL PATHOLOGY; INTERNATIONAL ASSOCIATION; PRIMARY DIAGNOSIS; CLASSIFICATION; VALIDATION; RADIOMICS; ADENOCARCINOMA; RECONSTRUCTION; EPIDEMIOLOGY;
D O I
10.3390/cancers11111673
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective: Accurate diagnosis and prognosis are essential in lung cancer treatment selection and planning. With the rapid advance of medical imaging technology, whole slide imaging (WSI) in pathology is becoming a routine clinical procedure. An interplay of needs and challenges exists for computer-aided diagnosis based on accurate and efficient analysis of pathology images. Recently, artificial intelligence, especially deep learning, has shown great potential in pathology image analysis tasks such as tumor region identification, prognosis prediction, tumor microenvironment characterization, and metastasis detection. Materials and Methods: In this review, we aim to provide an overview of current and potential applications for AI methods in pathology image analysis, with an emphasis on lung cancer. Results: We outlined the current challenges and opportunities in lung cancer pathology image analysis, discussed the recent deep learning developments that could potentially impact digital pathology in lung cancer, and summarized the existing applications of deep learning algorithms in lung cancer diagnosis and prognosis. Discussion and Conclusion: With the advance of technology, digital pathology could have great potential impacts in lung cancer patient care. We point out some promising future directions for lung cancer pathology image analysis, including multi-task learning, transfer learning, and model interpretation.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Artificial intelligence for medical image analysis in epilepsy
    Sollee, John
    Tang, Lei
    Igiraneza, Aime Bienfait
    Xiao, Bo
    Bai, Harrison X.
    Yang, Li
    EPILEPSY RESEARCH, 2022, 182
  • [42] Automated image analysis and artificial intelligence in nephropathology
    Buelow, Roman D.
    Hoelscher, David L.
    Boor, Peter
    NEPHROLOGIE, 2022, 17 (06): : 369 - 375
  • [43] Precision immunoprofiling by image analysis and artificial intelligence
    Koelzer, Viktor H.
    Sirinukunwattana, Korsuk
    Rittscher, Jens
    Mertz, Kirsten D.
    VIRCHOWS ARCHIV, 2019, 474 (04) : 511 - 522
  • [44] Precision immunoprofiling by image analysis and artificial intelligence
    Viktor H. Koelzer
    Korsuk Sirinukunwattana
    Jens Rittscher
    Kirsten D. Mertz
    Virchows Archiv, 2019, 474 : 511 - 522
  • [45] Artificial Intelligence in Pancreatic Image Analysis: A Review
    Liu, Weixuan
    Zhang, Bairui
    Liu, Tao
    Jiang, Juntao
    Liu, Yong
    SENSORS, 2024, 24 (14)
  • [46] A survey on artificial intelligence in histopathology image analysis
    Abdelsamea, Mohammed M.
    Zidan, Usama
    Senousy, Zakaria
    Gaber, Mohamed Medhat
    Rakha, Emad
    Ilyas, Mohammad
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 12 (06)
  • [47] Utilization of Artificial Intelligence in Automated Image Analysis
    Noboa, Nicholas S.
    Von Holle, John W.
    Brown, Paul A.
    Irvine, John M.
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,
  • [48] Artificial intelligence to optimize the accuracy and predictiveness of breast cancer pathology
    Beck, A.
    CANCER RESEARCH, 2019, 79 (04)
  • [49] Explainable Artificial Intelligence for Cytological Image Analysis
    Roehrl, Stefan
    Maier, Hendrik
    Lengl, Manuel
    Klenk, Christian
    Heim, Dominik
    Knopp, Martin
    Schumann, Simon
    Hayden, Oliver
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 : 75 - 85
  • [50] Pathology of transplanted heart rejection using artificial intelligence-based image analysis of endomyocardial biopsies
    Szferle, Csaba
    Saghi, Marton
    Nagy, Beata
    Horvath, Peter
    Kriston, Andras
    Kovacs, Ferenc
    Krenacs, Tibor
    Fintha, Attila
    ORVOSI HETILAP, 2024, 165 (44) : 1728 - 1734