Classification of Raman spectra using the correlation kernel

被引:15
|
作者
Kyriakides, Alexandros [1 ]
Kastanos, Evdokia [2 ]
Hadjigeorgiou, Katerina [1 ]
Pitris, Costas [1 ]
机构
[1] Univ Cyprus, CY-1678 Nicosia, Cyprus
[2] Univ Nicosia, CY-1700 Nicosia, Cyprus
关键词
Raman spectra; support vector machines; correlation kernel; UV-RESONANCE RAMAN; CHEMICAL-COMPOSITION; BACTERIAL-CELLS; SPECTROSCOPY; IDENTIFICATION; INFORMATION; PATHOGENS; TRANSFORM; CULTURE; ICU;
D O I
10.1002/jrs.2809
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The classification of Raman spectra can be very useful in a wide range of diagnostic applications including bacterial identification. Before any form of classification can be carried out on the Raman spectra, some form of pre-processing is commonly applied. This pre-processing greatly affects the accuracy of the results and introduces user bias and over-fitting effects. In this paper, we propose using support vector machines with the correlation kernel. The use of the correlation kernel on Raman spectra has not been presented before in any published work. Our results illustrate that the correlation kernel is 'self-normalizing' and produces superior classification performance with minimal pre-processing, even on highly noisy data obtained using inexpensive equipment. Such effective classification approaches can lead to clinically valuable diagnostic applications of Raman Spectroscopy. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:904 / 909
页数:6
相关论文
共 50 条
  • [21] Detection of skin cancer by classification of Raman spectra
    Sigurdsson, S
    Philipsen, PA
    Hansen, LK
    Larsen, J
    Gniadecka, M
    Wulf, HC
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (10) : 1784 - 1793
  • [22] Classification of Raman Spectra to Detect Hidden Explosives
    Butt, Naveed R.
    Nilsson, Mikael
    Jakobsson, Andreas
    Nordberg, Markus
    Pettersson, Anna
    Wallin, Sara
    Ostmark, Henric
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) : 517 - 521
  • [23] An improved composite kernel framework for hyperspectral image classification using canonical correlation analysis
    Chen, Hao
    Liu, Jianjun
    Xiao, Liang
    REMOTE SENSING LETTERS, 2019, 10 (04) : 411 - 420
  • [24] Neural network classification of wheat using single kernel near-infrared transmittance spectra
    USDA Agricultural Research Service, Beltsville, United States
    Opt Eng, 10 (2927-2934):
  • [25] Extended Analysis of Raman Spectra Using Artificial Intelligence Techniques for Colorectal Abnormality Classification
    Kalatzis, Dimitris
    Spyratou, Ellas
    Karnachoriti, Maria
    Kouri, Maria Anthi
    Stathopoulos, Ioannis
    Danias, Nikolaos
    Arkadopoulos, Nikolaos
    Orfanoudakis, Spyros
    Seimenis, Ioannis
    Kontos, Athanassios G.
    Efstathopoulos, Efstathios P.
    JOURNAL OF IMAGING, 2023, 9 (12)
  • [26] Enhancing decision confidence in AI using Monte Carlo dropout for Raman spectra classification
    Contreras, Jhonatan
    Bocklitz, Thomas
    ANALYTICA CHIMICA ACTA, 2024, 1332
  • [27] Classification System of Raman Spectra using Cluster Analysis to Diagnose Coronary Artery Lesions
    Santos, Ricardo S.
    Sidaoui, Hassan A.
    Silveira, Landulfo
    Pasqualucci, Carlos Augusto G.
    Pacheco, Marcos Tadeu T.
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2009, 37 (03) : 327 - 344
  • [28] Directional Kernel Density Estimation for Classification of Breast Tissue Spectra
    Pardo, Arturo
    Real, Eusebio
    Krishnaswamy, Venkat
    Miguel Lopez-Higuera, Jose
    Pogue, Brian W.
    Conde, Olga M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (01) : 64 - 73
  • [29] RAMAN-SPECTRA OF HYPOPHOSPHITE COMPOUNDS - CORRELATION WITH STRUCTURE
    TANNER, PA
    SHAMIR, J
    STAROSTIN, P
    JOURNAL OF MOLECULAR STRUCTURE, 1994, 326 : 267 - 269
  • [30] Enhancing Optical Correlation Decision Performance for Face Recognition by Using a Nonparametric Kernel Smoothing Classification
    Saumard, Matthieu
    Elbouz, Marwa
    Aron, Michael
    Alfalou, Ayman
    Brosseau, Christian
    SENSORS, 2019, 19 (23)