Elliptic curves, fibrations and automorphisms of Fano's surfaces.

被引:2
|
作者
Roulleau, Xavier [1 ]
机构
[1] Univ Angers, Dept Math, F-49045 Angers 01, France
关键词
D O I
10.1016/j.crma.2007.06.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we classify the Fano's surfaces according to the configuration of their elliptic curves. We show the link between these curves and order 2 automorphisms of such a surface. Then we examine the Fano's surface of the Fermat's cubic of P-4.
引用
收藏
页码:209 / 212
页数:4
相关论文
共 50 条
  • [21] On the Cohomologically Trivial Automorphisms of Elliptic Surfaces I: χ(S)=0
    Catanese, Fabrizio
    Frapporti, Davide
    Gleissner, Christian
    Liu, Wenfei
    Schuett, Matthias
    TAIWANESE JOURNAL OF MATHEMATICS, 2024,
  • [22] ELLIPTIC FIBRATIONS ON K3 SURFACES
    Nikulin, Viacheslav V.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (01) : 253 - 267
  • [23] Elliptic curve configurations on Fano surfaces
    Roulleau, Xavier
    MANUSCRIPTA MATHEMATICA, 2009, 129 (03) : 381 - 399
  • [24] Elliptic curve configurations on Fano surfaces
    Xavier Roulleau
    manuscripta mathematica, 2009, 129 : 381 - 399
  • [25] Computing bilinear pairings on elliptic curves with automorphisms
    Zhao, Chang-An
    Xie, Dongqing
    Zhang, Fangguo
    Zhang, Jingwei
    Chen, Bing-Long
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 58 (01) : 35 - 44
  • [26] Computing bilinear pairings on elliptic curves with automorphisms
    Chang-An Zhao
    Dongqing Xie
    Fangguo Zhang
    Jingwei Zhang
    Bing-Long Chen
    Designs, Codes and Cryptography, 2011, 58 : 35 - 44
  • [27] Linear systems on rational elliptic surfaces and elliptic fibrations on K3 surfaces
    Garbagnati, Alice
    Salgado, Cecilia
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (01) : 277 - 300
  • [28] Fano-type surfaces with large cyclic automorphisms
    Moraga, Joaquin
    FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [29] Derived equivalence and fibrations over curves and surfaces
    Lombardi, Luigi
    KYOTO JOURNAL OF MATHEMATICS, 2022, 62 (04) : 683 - 706
  • [30] The theory of degenerate algebraical curves and surfaces.
    Glenn, OE
    AMERICAN JOURNAL OF MATHEMATICS, 1910, 32 : 75 - 100