Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration

被引:106
|
作者
Jiang, Yanan [1 ]
Pan, Ximan [2 ]
Yao, Mengyu [3 ]
Han, Lu [4 ]
Zhang, Xin [1 ]
Jia, Zhanrong [1 ]
Weng, Jie [1 ]
Chen, Wenxiang [2 ]
Fang, Liming [2 ]
Wang, Xiaolan [3 ]
Zhang, Yu [3 ]
Duan, Ranxi [5 ]
Ren, Fuzeng [5 ]
Wang, Kefeng [6 ]
Chen, Xian [7 ]
Lu, Xiong [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Sichuan, Peoples R China
[2] South China Univ Technol, Natl Engn Res Ctr Tissue Restorat & Reconstruct, Sch Mat Sci & Engn, Guangzhou 510006, Peoples R China
[3] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Orthoped, Guangzhou 510080, Guangdong, Peoples R China
[4] Ocean Univ China, Sch Med & Pharmaceut, Lab Marine Drugs & Bioprod, Pilot Natl Lab Marine Sci & Technol, Qingdao 266003, Shandong, Peoples R China
[5] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[6] Sichuan Univ, Natl Engn Res Ctr Biomat, Chengdu 610064, Sichuan, Peoples R China
[7] Hosp Chengdu Univ Tradit Chinese Med, Chengdu 610072, Sichuan, Peoples R China
关键词
Polydopamine; Metal-organic framework (MOF); Hydroxyapatite; 3D printing scaffold; Bone tumor therapy; INSPIRED POLYDOPAMINE; SURFACE-CHEMISTRY; DRUG-DELIVERY; VERSATILE; HYDROXYAPATITE; NANOPARTICLES; NANOSPHERES; GRAPHENE; HYDROGEL; PLATFORM;
D O I
10.1016/j.nantod.2021.101182
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tumor-induced bone loss is the main reason causing bone tumor therapy failure. Rational design of implants with both anti-tumor and bone tissue regeneration functions is urgently needed. This study presents a 3D-printed implant that simultaneously releases anti-cancer drugs and growth factors for anti-tumor therapy and osteogenesis. Such an implant was realized by alternatively assembling polydopamine (PDA)hybridized nanosized zeolitic imidazolate framework-8 (pZIF-8 nanoMOFs) and PDA-decoratedhydroxyapatite nanoparticles (pHA NPs) on the surfaces of the 3D-printed gelatin-based scaffolds through PDA-assisted layer-by-layer (LbL) assembly strategy. The synthesis of the pZIF-8 nanoMOFs was based on mussel-inspired catechol chemistry, which endowed the nanoMOFs with versatile adhesiveness, high drug loading efficiency, good physiological stability, and tumor environment-sensitive degradability. By using the pZIF-8 nanoMOFs as drug nanocarriers, it was possible to define the distinct spatial distribution and environmental-adaptive release patterns for BMP-2 and cisplatin from the scaffold. In vitro and in vivo studies confirmed that the scaffold possessed good osteoinductivity to induce osteogenic differentiation and to promote new bone formation. By responding to stimuli in the tumor microenvironment, the scaffolds efficiently released cisplatin and inhibited tumor growth. In short, this PDA-hybridized nanoMOF offers a new avenue to functionalize biomaterials with smart and responsive therapeutic ability for diverse biomedical applications. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold
    Xu, Xiongcheng
    Xiao, Long
    Xu, Yanmei
    Zhuo, Jin
    Yang, Xue
    Li, Li
    Xiao, Nianqi
    Tao, Jing
    Zhong, Quan
    Li, Yanfen
    Chen, Yuling
    Du, Zhibin
    Luo, Kai
    REGENERATIVE BIOMATERIALS, 2021, 8 (06)
  • [22] 3D printed gellan gum/graphene oxide scaffold for tumor therapy and bone reconstruction
    Zhu, Shanshan
    Yao, Lingyun
    Pan, Cile
    Tian, Jinhuan
    Li, Lihua
    Luo, Binghong
    Zhou, Changren
    Lu, Lu
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 208 (208)
  • [23] Bioinspired poly-dopamine/nano-hydroxyapatite: an upgrading biocompatible coat for 3D-printed polylactic acid scaffold for bone regeneration
    Eldokmak, Mai M.
    Essawy, Marwa M.
    Abdelkader, Sally
    Abolgheit, Salma
    ODONTOLOGY, 2025, 113 (01) : 89 - 100
  • [24] 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy
    Liu, Yaqin
    Li, Tao
    Ma, Hongshi
    Zhai, Dong
    Deng, Cuijun
    Wang, Jinwu
    Zhuo, Shangjun
    Chang, Jiang
    Wu, Chengtie
    ACTA BIOMATERIALIA, 2018, 73 : 531 - 546
  • [25] Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration
    Han, Jinsub
    Park, Sangbae
    Kim, Jae Eun
    Park, Byeongjoo
    Hong, Yeonggeol
    Lim, Jae Woon
    Jeong, Seung
    Son, Hyunmok
    Kim, Hong Bae
    Seonwoo, Hoon
    Jang, Kyoung-Je
    Chung, Jong Hoon
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (02) : 968 - 977
  • [26] Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration
    Han, Jinsub
    Park, Sangbae
    Kim, Jae Eun
    Park, Byeongjoo
    Hong, Yeonggeol
    Lim, Jae Woon
    Jeong, Seung
    Son, Hyunmok
    Kim, Hong Bae
    Seonwoo, Hoon
    Jang, Kyoung-Je
    Chung, Jong Hoon
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023,
  • [27] Scaffold 3D-Printed from Metallic Nanoparticles-Containing Ink Simultaneously Eradicates Tumor and Repairs Tumor-Associated Bone Defects
    Lin, Huimin
    Shi, Shanwei
    Lan, Xinyue
    Quan, Xiaolong
    Xu, Qinqin
    Yao, Guangyu
    Liu, Jia
    Shuai, Xintao
    Wang, Chong
    Li, Xiang
    Yu, Meng
    SMALL METHODS, 2021, 5 (09)
  • [28] Regulation of Osteoimmune Microenvironment and Osteogenesis by 3D-Printed PLAG/black Phosphorus Scaffolds for Bone Regeneration
    Long, Jing
    Yao, Zhenyu
    Zhang, Wei
    Liu, Ben
    Chen, Kaiming
    Li, Long
    Teng, Bin
    Du, Xiang-Fu
    Li, Cairong
    Yu, Xue-Feng
    Qin, Ling
    Lai, Yuxiao
    ADVANCED SCIENCE, 2023, 10 (28)
  • [29] 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization
    Velioglu, Zeynep Busra
    Pulat, Deniz
    Demirbakan, Beril
    Ozcan, Burak
    Bayrak, Ece
    Erisken, Cevat
    CONNECTIVE TISSUE RESEARCH, 2019, 60 (03) : 274 - 282
  • [30] 3D-Printed Tissue-Specific Nanospike-Based Adhesive Materials for Time-Regulated Synergistic Tumor Therapy and Tissue Regeneration In Vivo
    Lee, Hyun
    Han, Ginam
    Na, Yuhyun
    Kang, Minho
    Bang, Seo-Jun
    Kang, Hyeong Seok
    Jang, Tae-Sik
    Park, Jung-Hoon
    Jang, Hae Lin
    Yang, Kisuk
    Kang, Heemin
    Jung, Hyun-Do
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (48)