Few-Shot Learning in Spiking Neural Networks by Multi-Timescale Optimization

被引:11
|
作者
Jiang, Runhao [1 ]
Zhang, Jie [1 ]
Yan, Rui [2 ]
Tang, Huajin [3 ,4 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Zhejiang Univ Technol, Coll Comp Sci, Hangzhou 310014, Peoples R China
[3] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[4] Zhejiang Lab, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
ALGORITHM; NEURONS;
D O I
10.1162/neco_a_01423
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning new concepts rapidly from a few examples is an open issue in spike-based machine learning. This few-shot learning imposes substantial challenges to the current learning methodologies of spiking neuron networks (SNNs) due to the lack of task-related priori knowledge. The recent learning-to-learn (L2L) approach allows SNNs to acquire priori knowledge through example-level learning and task-level optimization. However, existing L2L-based frameworks do not target the neural dynamics (i.e., neuronal and synaptic parameter changes) on different timescales. This diversity of temporal dynamics is an important attribute in spike-based learning, which facilitates the networks to rapidly acquire knowledge from very few examples and gradually integrate this knowledge. In this work, we consider the neural dynamics on various timescales and provide a multi-timescale optimization (MTSO) framework for SNNs. This framework introduces an adaptive-gated LSTM to accommodate two different timescales of neural dynamics: short-term learning and long-term evolution. Short-term learning is a fast knowledge acquisition process achieved by a novel surrogate gradient online learning (SGOL) algorithm, where the LSTM guides gradient updating of SNN on a short timescale through an adaptive learning rate and weight decay gating. The long-term evolution aims to slowly integrate acquired knowledge and form a priori, which can be achieved by optimizing the LSTM guidance process to tune SNN parameters on a long timescale. Experimental results demonstrate that the collaborative optimization of multi-timescale neural dynamics can make SNNs achieve promising performance for the few-shot learning tasks.
引用
收藏
页码:2439 / 2472
页数:34
相关论文
共 50 条
  • [31] Multi-semantic hypergraph neural network for effective few-shot learning
    Chen, Hao
    Li, LInyan
    Hu, Fuyuan
    Lyu, Fan
    Zhao, Liuqing
    Huang, Kaizhu
    Feng, Wei
    Xia, Zhenping
    PATTERN RECOGNITION, 2023, 142
  • [32] Lexicon Learning for Few-Shot Neural Sequence Modeling
    Akyurek, Ekin
    Andreas, Jacob
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 4934 - 4946
  • [33] Fuzzy Graph Neural Network for Few-Shot Learning
    Wei, Tong
    Hou, Junlin
    Feng, Rui
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [34] Graph Prototypical Networks for Few-shot Learning on Attributed Networks
    Ding, Kaize
    Wang, Jianling
    Li, Jundong
    Shu, Kai
    Liu, Chenghao
    Liu, Huan
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 295 - 304
  • [35] Empowering few-shot learning: a multimodal optimization framework
    Liriam Enamoto
    Geraldo Pereira Rocha Filho
    Li Weigang
    Neural Computing and Applications, 2025, 37 (5) : 3539 - 3560
  • [36] Empowering few-shot learning: a multimodal optimization framework
    Enamoto, Liriam
    Rocha Filho, Geraldo Pereira
    Weigang, Li
    Neural Computing and Applications, 2024,
  • [37] Prototype Relationship Optimization Network for Few-Shot Learning
    Wang, Dengzhong
    Zhong, Yuan
    Ma, Yunfei
    Guo, Chunsheng
    IEEJ Transactions on Electrical and Electronic Engineering, 2024,
  • [38] Prototype Relationship Optimization Network for Few-Shot Learning
    Wang, Dengzhong
    Zhong, Yuan
    Ma, Yunfei
    Guo, Chunsheng
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (03) : 405 - 414
  • [39] Cycle optimization metric learning for few-shot classification *
    Liu, Qifan
    Cao, Wenming
    He, Zhihai
    PATTERN RECOGNITION, 2023, 139
  • [40] A unified transductive and inductive learning framework for Few-Shot Learning using Graph Neural Networks
    Chang, Jie
    Ren, Haodong
    Li, Zuoyong
    Xu, Yinlong
    Lai, Taotao
    APPLIED SOFT COMPUTING, 2025, 173