How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet

被引:13
|
作者
Lacour, A. [1 ]
Chepfer, H. [1 ]
Miller, N. B. [2 ,3 ]
Shupe, M. D. [2 ,3 ]
Noel, V. [4 ]
Fettweis, X. [5 ]
Gallee, H. [6 ]
Kay, J. E. [2 ]
Guzman, R. [7 ]
Cole, J. [8 ]
机构
[1] Univ Paris 06, Sorbonne Univ, Lab Meteorol Dynam, Inst Pierre Simon Laplace Ecole Polytech, Palaiseau, France
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] NOAA, Earth Syst Res Lab, Boulder, CO USA
[4] CNRS INSU, Lab Aerol, Toulouse, France
[5] Univ Liege, Dept Geog, Liege, Belgium
[6] Lab Glaciol & Geophys Environm, Grenoble, France
[7] Inst Pierre Simon Laplace Ecole Polytech, CNRS, Lab Meteorol Dynam, Palaiseau, France
[8] Canadian Ctr Climate Modelling & Anal Environm &, Victoria, BC, Canada
基金
美国国家科学基金会;
关键词
Atmosphere; Ice sheets; Cloud forcing; Clouds; Snowmelt; icemelt; General circulation models; EARTH SYSTEM MODEL; MELT EXTENT; BUDGET; COVER; PHASE;
D O I
10.1175/JCLI-D-18-0023.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Using lidar and radiative flux observations from space and ground, and a lidar simulator, we evaluate clouds simulated by climate models over the Greenland ice sheet, including predicted cloud cover, cloud fraction profile, cloud opacity, and surface cloud radiative effects. The representation of clouds over Greenland is a central concern for the models because clouds impact ice sheet surface melt. We find that over Greenland, most of the models have insufficient cloud cover during summer. In addition, all models create too few nonopaque, liquid-containing clouds optically thin enough to let direct solar radiation reach the surface (-1% to -3.5% at the ground level). Some models create too few opaque clouds. In most climate models, the cloud properties biases identified over all Greenland also apply at Summit, Greenland, proving the value of the ground observatory in model evaluation. At Summit, climate models underestimate cloud radiative effect (CRE) at the surface, especially in summer. The primary driver of the summer CRE biases compared to observations is the underestimation of the cloud cover in summer (-46% to -21%), which leads to an underestimated longwave radiative warming effect (CRELW = -35.7 to -13.6 W m(-2) compared to the ground observations) and an underestimated shortwave cooling effect (CRESW = +1.5 to +10.5 W m(-2) compared to the ground observations). Overall, the simulated clouds do not radiatively warm the surface as much as observed.
引用
收藏
页码:9293 / 9312
页数:20
相关论文
共 50 条
  • [32] Variability of AVHRR-derived clear-sky surface temperature over the Greenland ice sheet
    Stroeve, J
    Steffen, K
    JOURNAL OF APPLIED METEOROLOGY, 1998, 37 (01): : 23 - 31
  • [33] GrSMBMIP: intercomparison of the modelled 1980-2012 surface mass balance over the Greenland Ice Sheet
    Fettweis, Xavier
    Hofer, Stefan
    Krebs-Kanzow, Uta
    Amory, Charles
    Aoki, Teruo
    Berends, Constantijn J.
    Born, Andreas
    Box, Jason E.
    Delhasse, Alison
    Fujita, Koji
    Gierz, Paul
    Goelzer, Heiko
    Hanna, Edward
    Hashimoto, Akihiro
    Huybrechts, Philippe
    Kapsch, Marie-Luise
    King, Michalea D.
    Kittel, Christoph
    Lang, Charlotte
    Langen, Peter L.
    Lenaerts, Jan T. M.
    Liston, Glen E.
    Lohmann, Gerrit
    Mernild, Sebastian H.
    Mikolajewicz, Uwe
    Modali, Kameswarrao
    Mottram, Ruth H.
    Niwano, Masashi
    Noel, Brice
    Ryan, Jonathan C.
    Smith, Amy
    Streffing, Jan
    Tedesco, Marco
    van de Berg, Willem Jan
    van den Broeke, Michiel
    van de Wal, Roderik S. W.
    van Kampenhout, Leo
    Wilton, David
    Wouters, Bert
    Ziemen, Florian
    Zolles, Tobias
    CRYOSPHERE, 2020, 14 (11): : 3935 - 3958
  • [34] Surface mass balance of the Greenland ice sheet from climate-analysis data and accumulation/runoff models
    Hanna, E
    Huybrechts, P
    Mote, TL
    ANNALS OF GLACIOLOGY, VOL 35, 2002, 35 : 67 - 72
  • [35] Assessing bare-ice albedo simulated by MAR over the Greenland ice sheet (2000-2021) and implications for meltwater production estimates
    Antwerpen, Raf M.
    Tedesco, Marco
    Fettweis, Xavier
    Alexander, Patrick
    van de Berg, Willem Jan
    CRYOSPHERE, 2022, 16 (10): : 4185 - 4199
  • [36] The Effect of Physically Based Ice Radiative Processes on Greenland Ice Sheet Albedo and Surface Mass Balance in E3SM
    Whicker-Clarke, C. A.
    Antwerpen, R.
    Flanner, M. G.
    Schneider, A.
    Tedesco, M.
    Zender, C. S.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2024, 129 (07)
  • [37] Atmosphere to Surface Profiles of Water-Vapor Isotopes and Meteorological Conditions Over the Northeast Greenland Ice Sheet
    Rozmiarek, Kevin S.
    Dietrich, Laura J.
    Vaughn, Bruce H.
    Town, Michael S.
    Markle, Bradley R.
    Morris, Valerie
    Steen-Larsen, Hans Christian
    Fettweis, Xavier
    Brashear, Chloe A.
    Bennett, Hayley
    Jones, Tyler R.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2025, 130 (06)
  • [38] Assessment of various microwave brightness temperature products and methods for surface melt detection over Greenland ice sheet
    Mishra, Pooja
    Tripathi, Naveen
    Oza, S. R.
    Singh, S. K.
    Bhatt, N. Y.
    Solanki, P. M.
    POLAR SCIENCE, 2024, 42
  • [39] Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait
    Becker, Sebastian
    Ehrlich, Andre
    Schaefer, Michael
    Wendisch, Manfred
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (12) : 7015 - 7031
  • [40] How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet?
    Ryan, J. C.
    Hubbard, A.
    Irvine-Fynn, T. D.
    Doyle, S. H.
    Cook, J. M.
    Stibal, M.
    Box, J. E.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (12) : 6218 - 6225