CONVERGENCE RATE IN PERIODIC HOMOGENIZATION OF HIGHER-ORDER PARABOLIC SYSTEMS REVISITED

被引:0
|
作者
Meng, Qing [1 ]
Niu, Weisheng [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Math Sci, Ctr Pure Math, Hefei 230601, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the convergence rate in periodic homogenization of higher order parabolic systems with time-dependent coefficients. The sharp O(epsilon)-order scaling invariant convergence rate in the space L-2 (0, T; W-m-1,W-p0 (Omega)), p(0) = 2d/d-1 is derived by the duality argument. This largely improves the corresponding result by Niu and Xu in Discrete Contin. Dynam. Systems. Series A 38(8): 4203-4229 (2018).
引用
收藏
页码:531 / 557
页数:27
相关论文
共 50 条
  • [21] Uniform boundary estimates in homogenization of higher-order elliptic systems
    Niu, Weisheng
    Xu, Yao
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 97 - 128
  • [22] Uniform boundary estimates in homogenization of higher-order elliptic systems
    Weisheng Niu
    Yao Xu
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 97 - 128
  • [23] The higher-order power method revisited: Convergence proofs and effective initialization
    Regalia, PA
    Kofidis, E
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 2709 - 2712
  • [24] Computational homogenization of higher-order continua
    Schmidt, Felix
    Krueger, Melanie
    Keip, Marc-Andre
    Hesch, Christian
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (11) : 2499 - 2529
  • [25] VERY WEAK SOLUTIONS OF HIGHER-ORDER DEGENERATE PARABOLIC SYSTEMS
    Boegelein, Verena
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2009, 14 (1-2) : 121 - 200
  • [26] Convergence rates and interior estimates in homogenization of higher order elliptic systems
    Niu, Weisheng
    Shen, Zhongwei
    Xu, Yao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (08) : 2356 - 2398
  • [27] Rate of convergence for correctors in almost periodic homogenization
    Bondarenko, A
    Bouchitte, G
    Mascarenhas, L
    Mahadevan, R
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (02) : 503 - 514
  • [28] Higher-Order Linearization and Regularity in Nonlinear Homogenization
    Scott Armstrong
    Samuel J. Ferguson
    Tuomo Kuusi
    Archive for Rational Mechanics and Analysis, 2020, 237 : 631 - 741
  • [29] Higher-Order Linearization and Regularity in Nonlinear Homogenization
    Armstrong, Scott
    Ferguson, Samuel J.
    Kuusi, Tuomo
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (02) : 631 - 741
  • [30] Higher-order averaging: periodic solutions, linear systems and an application
    Hartono
    van der Burgh, AHP
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (07) : 1727 - 1744