CONVERGENCE RATE IN PERIODIC HOMOGENIZATION OF HIGHER-ORDER PARABOLIC SYSTEMS REVISITED

被引:0
|
作者
Meng, Qing [1 ]
Niu, Weisheng [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Math Sci, Ctr Pure Math, Hefei 230601, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the convergence rate in periodic homogenization of higher order parabolic systems with time-dependent coefficients. The sharp O(epsilon)-order scaling invariant convergence rate in the space L-2 (0, T; W-m-1,W-p0 (Omega)), p(0) = 2d/d-1 is derived by the duality argument. This largely improves the corresponding result by Niu and Xu in Discrete Contin. Dynam. Systems. Series A 38(8): 4203-4229 (2018).
引用
收藏
页码:531 / 557
页数:27
相关论文
共 50 条