Water Relations and Transpiration of Quinoa (Chenopodium quinoa Willd.) Under Salinity and Soil Drying

被引:117
|
作者
Razzaghi, F. [1 ]
Ahmadi, S. H. [2 ]
Adolf, V. I. [3 ]
Jensen, C. R. [3 ]
Jacobsen, S. -E. [3 ]
Andersen, M. N. [1 ]
机构
[1] Aarhus Univ, Fac Agr Sci, Dept Agroecol & Environm, DK-8830 Tjele, Denmark
[2] Shiraz Univ, Fac Agr, Irrigat Dept, Shiraz, Iran
[3] Univ Copenhagen, Fac Life Sci, Dept Agr & Ecol, Taastrup, Denmark
关键词
apparent root resistance; critical point of irrigation; drought; leaf water potential; stomatal conductance; HYDRAULIC CONDUCTIVITY; STOMATAL CONTROL; PLANT-RESPONSES; SALT TOLERANCE; USE EFFICIENCY; ABSCISIC-ACID; GROWTH; RESISTANCE; DROUGHT; CROP;
D O I
10.1111/j.1439-037X.2011.00473.x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Drought and salinity are the two major factors limiting crop growth and production in arid and semi-arid regions. The separate and combined effects of salinity and progressive drought in quinoa (Chenopodium quinoa Willd.) were studied in a greenhouse experiment. Stomatal conductance (gs), leaf water potential (Psi(1)), shoot and root abscisic acid concentration ([ABA]) and transpiration rate were measured in full irrigation (FI; around 95 % of water holding capacity (WHC)) and progressive drought (PD) treatments using the irrigation water with five salinity levels (0, 10, 20, 30 and 40 dS m(-1)); the treatments are referred to as FI0, FI10, FI20, FI30, FI40; PD0, PD10, PD20, PD30, PD40, respectively. The measurements were carried out over 9 days of continuous drought. The results showed that increasing salinity levels decreased the total soil water potential (Psi(T)) and consequently decreased g(s) and Psi(1) values in both FI and PD. During the drought period, the xylem [ABA] extracted from the shoots increased faster than that extracted from the roots. A reduction in Psi(T), caused by salinity and soil drying, reduced transpiration and increased apparent root resistance (R) to water uptake, especially in PD0 and PD40 during the last days of the drought period. The reasons for the increase in apparent root resistance are discussed. At the end of the drought period, the minimum value of relative available soil water (RAW) was reached in PD0. Under non-saline conditions, Psi(1) decreased sharply when RAW reached 0.42 or lower, but under the saline conditions of PD10 and PD20, the threshold values of RAW were 0.67 and 0.96, respectively. In conclusion, due to the additive effect of osmotic and matric potential during soil drying on soil water availability, quinoa should be re-irrigated at higher RAW in salt-affected soils, i.e. before the soil water content reaches the critical threshold level causing the drop in Psi(1) resulting in stomatal closure.
引用
收藏
页码:348 / 360
页数:13
相关论文
共 50 条
  • [21] Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives
    Zurita-Silva, Andres
    Fuentes, Francisco
    Zamora, Pablo
    Jacobsen, Sven-Erik
    Schwember, Andres R.
    MOLECULAR BREEDING, 2014, 34 (01) : 13 - 30
  • [22] EVALUATION OF THE ALLELOPATHIC POTENTIAL OF QUINOA (CHENOPODIUM QUINOA WILLD.)
    Bilalis, Dimitrios J.
    Travlos, Ilias S.
    Karkanis, Anestis
    Gournaki, Maria
    Katsenios, Giannis
    Hela, Dimitra
    Kakabouki, Ioanna
    ROMANIAN AGRICULTURAL RESEARCH, 2013, 30 : 359 - 364
  • [23] Sustainability of quinoa (Chenopodium quinoa Willd.) production systems
    Pinedo-Taco, Rember
    Gomez-Pando, Luz
    Julca-Otiniano, Alberto
    ECOSISTEMAS Y RECURSOS AGROPECUARIOS, 2018, 5 (15): : 399 - 409
  • [24] Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.)
    Nowak, Verena
    Du, Juan
    Charrondiere, U. Ruth
    FOOD CHEMISTRY, 2016, 193 : 47 - 54
  • [25] Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.)
    Jacobsen, S.-E.
    Monteros, C.
    Corcuera, L. J.
    Bravo, L. A.
    Christiansen, J. L.
    Mujica, A.
    EUROPEAN JOURNAL OF AGRONOMY, 2007, 26 (04) : 471 - 475
  • [26] Effectiveness of fungal bacterial biofertilizers on agrobiochemical attributes of quinoa (Chenopodium quinoa willd.) under salinity stress
    Karimi, G.
    Pourakbar, L.
    Moghaddam, S. Siavash
    Danesh, Y. Rezaee
    Popovi'c-Djordjevi'c, J.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2022, 19 (12) : 11989 - 12002
  • [27] Growth Analysis of Quinoa (Chenopodium quinoa Willd.) in Response to Fertilization and Soil Tillage
    Kakabouki, Ioanna P.
    Roussis, Ioannis E.
    Papastylianou, Panagiota
    Kanatas, Panagiotis
    Hela, Dimitra
    Katsenios, Nikolaos
    Fuentes, Francisco
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2019, 47 (04) : 1025 - 1036
  • [28] Mitigating Salinity Stress in Quinoa (Chenopodium quinoa Willd.) with Biochar and Superabsorber Polymer Amendments
    Derbali, Imed
    Derbali, Walid
    Gharred, Jihed
    Manaa, Arafet
    Slama, Ines
    Koyro, Hans-Werner
    PLANTS-BASEL, 2024, 13 (01):
  • [29] The Andean grain crop quinoa (Chenopodium quinoa Willd.) maintains photosynthesis and increases water use efficiency during soil drying
    Jacobsen, SE
    Liu, FL
    Jensen, CR
    WATER-SAVING AGRICULTURE AND SUSTAINABLE USE OF WATER AND LAND RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2004, : 80 - 92
  • [30] Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.)
    Ana Carolina Sales
    Cid Naudi Silva Campos
    Jonas Pereira de Souza Junior
    Dalila Lopes da Silva
    Kamilla Silva Oliveira
    Renato de Mello Prado
    Larissa Pereira Ribeiro Teodoro
    Paulo Eduardo Teodoro
    Scientific Reports, 11