Nonlinear filtering problems;
backward doubly stochastic differential equation;
first order algorithm;
quasi Monte Carlo sequence;
PARTICLE FILTERS;
APPROXIMATION;
D O I:
10.4208/cicp.OA-2017-0084
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
A backward doubly stochastic differential equation (BDSDE) based nonlinear filtering method is considered. The solution of the BDSDE is the unnormalized density function of the conditional expectation of the state variable with respect to the observation filtration, which solves the nonlinear filtering problem through the Kallianpur formula. A first order finite difference algorithm is constructed to solve the BSDES, which results in an accurate numerical method for nonlinear filtering problems. Numerical experiments demonstrate that the BDSDE filter has the potential to significantly outperform some of the well known nonlinear filtering methods such as particle filter and Zakai filter in both numerical accuracy and computational complexity.
机构:
LERSTAD, UFR de Sciences Appliquées et de Technologie, Université Gaston Berger, BP 234, Saint-LouisLERSTAD, UFR de Sciences Appliquées et de Technologie, Université Gaston Berger, BP 234, Saint-Louis
Sagna Y.
Sow A.B.
论文数: 0引用数: 0
h-index: 0
机构:
LERSTAD, UFR de Sciences Appliquées et de Technologie, Université Gaston Berger, BP 234, Saint-LouisLERSTAD, UFR de Sciences Appliquées et de Technologie, Université Gaston Berger, BP 234, Saint-Louis
机构:
Univ Bretagne Occidentale, CNRS, UMR 6205, Math Lab, F-29238 Brest 3, France
Shandong Univ, Sch Math, Jinan 250100, Peoples R ChinaUniv Bretagne Occidentale, CNRS, UMR 6205, Math Lab, F-29238 Brest 3, France