CQR-based inference for the infinite-variance nearly nonstationary autoregressive models

被引:0
|
作者
Fu, Ke-Ang [1 ]
Ni, Jialin [2 ]
Dong, Yajuan [2 ]
机构
[1] Zhejiang Univ City Coll, Dept Stat, Hangzhou 310015, Peoples R China
[2] Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Peoples R China
关键词
asymptotic distribution; composite quantile regression; infinite variance; nearly nonstationary autoregressive model; COMPOSITE QUANTILE REGRESSION; ASYMPTOTIC THEORY; LIMIT-THEOREMS; TIME-SERIES; SELECTION;
D O I
10.1007/s10986-021-09539-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nearly nonstationary autoregressive model y(t) = q(n)y(t-1)+u(t), where q(n) = 1-c/n, c is a fixed constant, and {u(t), t >= 1} is a sequence of innovations belonging to the domain of attraction of a stable distribution with index 0 < alpha < 2. We construct a composite quantile regression estimator for the autoregressive coefficient and establish the asymptotic distribution of this estimator under some mild conditions.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] The modified Yule-Walker method for multidimensional infinite-variance periodic autoregressive model of order 1
    Prashant Giri
    Aleksandra Grzesiek
    Wojciech Żuławiński
    S. Sundar
    Agnieszka Wyłomańska
    Journal of the Korean Statistical Society, 2023, 52 : 462 - 493
  • [22] Regularization and variable selection for infinite variance autoregressive models
    Xu, Ganggang
    Xiang, Yanbiao
    Wang, Suojin
    Lin, Zhengyan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (09) : 2545 - 2553
  • [23] The modified Yule-Walker method for multidimensional infinite-variance periodic autoregressive model of order 1
    Giri, Prashant
    Grzesiek, Aleksandra
    Zulawinski, Wojciech
    Sundar, S.
    Wylomanska, Agnieszka
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (02) : 462 - 493
  • [24] Fully modified vector autoregressive inference in partially nonstationary models
    Quintos, CE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) : 783 - 795
  • [25] Efficient estimation and variable selection for infinite variance autoregressive models
    Tang, Linjun
    Zhou, Zhangong
    Wu, Changchun
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2012, 40 (1-2) : 399 - 413
  • [26] Efficient estimation and variable selection for infinite variance autoregressive models
    Linjun Tang
    Zhangong Zhou
    Changchun Wu
    Journal of Applied Mathematics and Computing, 2012, 40 (1-2) : 399 - 413
  • [27] Monitoring Variance Change in Infinite Order Moving Average Processes and Nonstationary Autoregressive Processes
    Chen, Zhanshou
    Tian, Zheng
    Qin, Ruibing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (07) : 1254 - 1270
  • [28] Quantile inference for near-integrated autoregressive time series with infinite variance
    Chan, NH
    Peng, LA
    Qi, YC
    STATISTICA SINICA, 2006, 16 (01) : 15 - 28
  • [29] Empirical likelihood for the smoothed LAD estimator in infinite variance autoregressive models
    Li, Jinyu
    Liang, Wei
    He, Shuyuan
    Wu, Xianbin
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (17-18) : 1420 - 1430
  • [30] Asymptotic inference for nonstationary fractionally integrated autoregressive moving-average models
    Ling, SQ
    Li, WK
    ECONOMETRIC THEORY, 2001, 17 (04) : 738 - 764