Time-periodic solutions of a nonlinear wave equation

被引:3
|
作者
Bui An Ton [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
Time-periodic solution; 3D nonlinear wave equation; Control;
D O I
10.1016/j.na.2011.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a time-periodic solution of an n-dimensional nonlinear wave equation is established with n = 2 and 3. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5088 / 5096
页数:9
相关论文
共 50 条
  • [31] ON THE STRUCTURE OF THE SPECTRUM OF A LINEAR TIME-PERIODIC WAVE-EQUATION
    LOPES, O
    JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 : 55 - 68
  • [32] POSITIVE PERIODIC SOLUTIONS FOR THE NONLINEAR WAVE EQUATION
    Georgiev, Svetlin Georgiev
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2010, 2 (02): : 283 - 298
  • [33] Computation of Time-Periodic Solutions of the Benjamin-Ono Equation
    Ambrose, David M.
    Wilkening, Jon
    JOURNAL OF NONLINEAR SCIENCE, 2010, 20 (03) : 277 - 308
  • [34] On the Time-periodic Solutions of a Quasi linear Degenerate Parabolic Equation
    Zhan, Huashui
    Li, Long
    FMA '09: PROCEEDINGS OF THE 7TH IASME / WSEAS INTERNATIONAL CONFERENCE ON FLUID MECHANICS AND AERODYNAMICS, 2009, : 212 - 219
  • [35] Time periodic solutions to a nonlinear wave equation with x-dependent coefficients
    Shuguan Ji
    Calculus of Variations and Partial Differential Equations, 2008, 32 : 137 - 153
  • [36] Time periodic solutions to a nonlinear wave equation with x-dependent coefficients
    Ji, Shuguan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 32 (02) : 137 - 153
  • [38] On the spectral problem associated with the time-periodic nonlinear Schrödinger equation
    Jonatan Lenells
    Ronald Quirchmayr
    Mathematische Annalen, 2020, 377 : 1193 - 1264
  • [39] Time-periodic solution to a nonlinear parabolic type equation of higher order
    Wang, Yan-ping
    Zhang, You-lin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (01): : 129 - 140
  • [40] Time-periodic solitons in a damped-driven nonlinear Schrodinger equation
    Barashenkov, I. V.
    Zemlyanaya, E. V.
    van Heerden, T. C.
    PHYSICAL REVIEW E, 2011, 83 (05):