Optimal upper bound for the maximum of the k-th derivative of Hardy's function

被引:2
|
作者
Blanc, Philippe [1 ]
机构
[1] Haute Ecole Ingn & Gest, CH-1401 Yverdon, Switzerland
关键词
Riemann zeta function; Hardy's function;
D O I
10.1016/j.jnt.2015.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an approximate functional equation for the derivatives of Hardy's Z-function, uniform with respect to the order of the derivatives, from which we deduce an optimal upper bound for the k-th derivative of Z. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 50 条
  • [11] OPTIMAL SELECTION OF THE k-TH BEST CANDIDATE
    Lin, Yi-Shen
    Hsiau, Shoou-Ren
    Yao, Yi-Ching
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2019, 33 (03) : 327 - 347
  • [12] FURTHER RESULTS ABOUT THE VALUE DISTRIBUTION OF MEROMORPHIC FUNCTION WITH ITS K-TH DERIVATIVE
    Qi, Jianming
    Meng, Fanning
    Yuan, Wenjun
    HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (01): : 91 - 100
  • [13] UPPER-BOUNDS FOR K-TH MAXIMAL SPACINGS
    DEHEUVELS, P
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (04): : 465 - 474
  • [14] ON THE k-TH DIFFERENCE OF AN ADDITIVE REPRESENTATION FUNCTION
    Sandor Z. Kiss
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2011, 48 (01) : 93 - 103
  • [15] An arithmetical function and the k-th power complements
    Huang Wei
    Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, : 123 - 126
  • [16] ESTIMATIONS FOR THE MAXIMUM DIVISOR OF K-TH POWER .1.
    HORN, G
    MATHEMATISCHE NACHRICHTEN, 1989, 141 : 343 - 350
  • [17] Accurate evaluation of the k-th derivative of a polynomial and its application
    Jiang, Hao
    Graillat, Stef
    Hu, Canbin
    Li, Shengguo
    Liao, Xiangke
    Cheng, Lizhi
    Su, Fang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 243 : 28 - 47
  • [18] ESTIMATIONS FOR THE MAXIMUM DIVISOR OF K-TH POWER .2.
    HORN, G
    MATHEMATISCHE NACHRICHTEN, 1990, 147 : 167 - 173
  • [19] On the additive k-th power part residue function
    Zhang Shengsheng
    Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, : 119 - 122
  • [20] Conjugate function and the modulus of continuity of k-th order
    Ana Danelia
    Acta Mathematica Hungarica, 2013, 138 : 281 - 293