Interseismic Ground Deformation and Fault Slip Rates in the Greater San Francisco Bay Area From Two Decades of Space Geodetic Data

被引:32
|
作者
Xu, Wenbin [1 ,2 ,3 ]
Wu, Songbo [1 ]
Materna, Kathryn [2 ,3 ]
Nadeau, Robert [2 ,3 ]
Floyd, Michael [4 ]
Funning, Gareth [5 ]
Chaussard, Estelle [6 ]
Johnson, Christopher W. [2 ,3 ]
Murray, Jessica R. [7 ]
Ding, Xiaoli [1 ]
Buergmann, Roland [2 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Hong Kong, Peoples R China
[2] Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[4] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA
[5] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[6] SUNY Buffalo, Dept Geol, Buffalo, NY USA
[7] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA
关键词
RODGERS CREEK FAULT; GEYSERS GEOTHERMAL-FIELD; AMERICA PLATE BOUNDARY; NORTH ANATOLIAN FAULT; ANDREAS FAULT; HAYWARD FAULT; REPEATING EARTHQUAKES; STRAIN ACCUMULATION; ASEISMIC SLIP; TIME-SERIES;
D O I
10.1029/2018JB016004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The detailed spatial variations of strain accumulation and creep on major faults in the northern San Francisco Bay Area (North Bay), which are important for seismic potential and evaluation of natural hazards, remain poorly understood. Here we combine interferometric synthetic aperture radar data from the ERS-1/2 and Envisat satellites between 1992 and 2010 with continuous and campaign GPS data to obtain a high spatial and temporal coverage of ground deformation of the North Bay. The SAR data from both ascending and descending orbits are combined to separate horizontal and vertical components of the deformation. We jointly invert the horizontal component of the mean velocities derived from these data to infer the deep strike-slip rates on major locked faults. We use the estimated deep rates to simulate the long-wavelength deformation due to interseismic elastic strain accumulation along these locked faults. After removing the long-wavelength signal from the InSAR horizontal mean velocity field, we estimate fault-parallel surface creep rates of up to 2mm/year along the central section of the Rodgers Creek fault and surface creep rates ranging between 2 and 4mm/year along the Concord fault. No surface creep is geodetically resolved along the West Napa and Green Valley fault zones. We identified characteristically repeating earthquakes on the Rodgers Creek fault, the West Napa fault, the Green Valley fault, and the Concord fault. Nontectonic deformation in the Geysers geothermal field and in Late Cenozoic basins (Rohnert Park and Sonoma basins) are also observed, likely due to hydrological and sediment-compaction processes, respectively.
引用
收藏
页码:8095 / 8109
页数:15
相关论文
共 33 条