EVALUATION OF COMPLEXITY MEASURES FOR DEEP LEARNING GENERALIZATION IN MEDICAL IMAGE ANALYSIS

被引:0
|
作者
Vakanski, Aleksandar [1 ]
Xian, Min [2 ]
机构
[1] Univ Idaho, Dept Nucl Engn & Ind Management, Idaho Falls, ID 83402 USA
[2] Univ Idaho, Dept Comp Sci, Idaho Falls, ID USA
基金
美国国家卫生研究院;
关键词
Deep Learning; Generalization; Complexity Measures; Medical Image Analysis;
D O I
10.1109/MLSP52302.2021.9596501
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The generalization error of deep learning models for medical image analysis often increases on images collected with different devices for data acquisition, device settings, or patient population. A better understanding of the generalization capacity on new images is crucial for clinicians' trustworthiness. Although significant efforts have been recently directed toward establishing generalization bounds and complexity measures, there is still a significant discrepancy between the predicted and actual generalization performance. As well, related large empirical studies have been primarily based on validation with general-purpose image datasets. This paper presents an empirical study that investigates the correlation between 25 complexity measures and the generalization abilities of deep learning classifiers for breast ultrasound images. The results indicate that PAC-Bayes flatness and path norm measures produce the most consistent explanation for the combination of models and data. We also report that multi-task classification and segmentation approach for breast images is conducive toward improved generalization.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Shallow and deep learning classifiers in medical image analysis
    Francesco Prinzi
    Tiziana Currieri
    Salvatore Gaglio
    Salvatore Vitabile
    European Radiology Experimental, 8
  • [32] Medical image analysis based on deep learning approach
    Puttagunta, Muralikrishna
    Ravi, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (16) : 24365 - 24398
  • [33] Explainable Deep Learning in Spectral and Medical Image Analysis
    Liu, Xuyang
    Duan, Chaoshu
    Cai, Wensheng
    Shao, Xueguang
    PROGRESS IN CHEMISTRY, 2022, 34 (12) : 2561 - 2572
  • [34] Advances in Deep Learning Techniques for Medical Image Analysis
    Niyaz, Usma
    Sambyal, Abhishek Singh
    Devanand
    2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 271 - 277
  • [35] Explainable Deep Learning Models in Medical Image Analysis
    Singh, Amitojdeep
    Sengupta, Sourya
    Lakshminarayanan, Vasudevan
    JOURNAL OF IMAGING, 2020, 6 (06)
  • [36] Deep Learning and Big DataTechnologies in Medical Image Analysis
    Rastogi, Priyanka
    Singh, Vijendra
    Yadav, Monika
    2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 60 - 63
  • [37] Bayesian Deep Active Learning for Medical Image Analysis
    Ghoshal, Biraja
    Swift, Stephen
    Tucker, Allan
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2021), 2021, : 36 - 42
  • [38] An Analysis Of Deep Learning In CXR Medical Image Processing
    Shafi, Syed Mohammed
    Kumar, Sathiya
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 701 - 709
  • [39] Shallow and deep learning classifiers in medical image analysis
    Prinzi, Francesco
    Currieri, Tiziana
    Gaglio, Salvatore
    Vitabile, Salvatore
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [40] Medical Image Analysis using Deep Relational Learning
    Liu, Zhihua
    arXiv, 2023,