On the S-approximation of the Earth's gravity field

被引:13
|
作者
Stepanova, I. E. [1 ]
机构
[1] Inst Phys Earth RAS, Moscow, Russia
关键词
inverse problems; algebraic systems of matrices; ill-posedness; regularization;
D O I
10.1080/17415970701661248
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The linear integral representation method has been developed from the Backus and Gilbert (Backus, G. and Gilbert, F., 1967, Numerical application of formalism for geophysical inverse problems. Geophysical Journal of the Royal Astronomical Society, 13, 247-276; Backus, G. and Gilbert, F., 1968, The resolving power of gross Earth data. Geophysical Journal of the Royal Astronomical Society, 16, 169-205) method for solving problems, in which the number of data is sufficiently large; at the same time the spatial distribution of some physical properties is represented by a large number of the parameters, or even is an unknown function of spatial coordinates. The linear integral representation method enables us to obtain the solution using discrete and approximately given field data. Elements of the external gravity field are represented by a sum of simple and double layer potentials, which are harmonic outside the field sources. The field sources are distributed on one or several planes lying under the Earth surface. We show that this approximation (we call it S-approximation) gives reasonable results in the synthesis problems, since various gravity field elements can be obtained from the S-approximation of only one field element by elementary operations.
引用
收藏
页码:547 / 566
页数:20
相关论文
共 50 条
  • [41] GRACE satellites start to map Earth's gravity field
    Levi, BG
    PHYSICS TODAY, 2003, 56 (02) : 18 - 18
  • [42] Modelling the Earth's gravity field using wavelet frames
    Panet, I
    Jamet, O
    Diament, M
    Chambodut, A
    GRAVITY, GEOID AND SPACE MISSIONS, 2005, 129 : 48 - 53
  • [43] Modern global earth's gravity field models and their errors
    Koneshov V.N.
    Nepoklonov V.B.
    Sermyagin R.A.
    Lidovskaya E.A.
    Koneshov, V.N., 1600, Maik Nauka Publishing / Springer SBM (04): : 147 - 155
  • [44] Comparative Assessment of Global Models of the Earth’s Gravity Field
    V. N. Koneshov
    V. B. Nepoklonov
    E. S. Spiridonova
    M. V. Maksimova
    Izvestiya, Physics of the Solid Earth, 2020, 56 : 249 - 259
  • [45] The measurement of Earth's gravity field after the GOCE mission
    Cesare, Stefano
    Aguirre, Miguel
    Allasio, Andrea
    Leone, Bruno
    Massotti, Luca
    Muzi, Danilo
    Silvestrin, Pierluigi
    ACTA ASTRONAUTICA, 2010, 67 (7-8) : 702 - 712
  • [46] New space missions for mapping the Earth's gravity field
    Balmino, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2001, 2 (09): : 1353 - 1359
  • [47] Comparative Assessment of Global Models of the Earth's Gravity Field
    Koneshov, V. N.
    Nepoklonov, V. B.
    Spiridonova, E. S.
    Maksimova, M., V
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2020, 56 (02) : 249 - 259
  • [48] SPACEBORNE SUPERCONDUCTING GRAVITY GRADIOMETER FOR MAPPING THE EARTH'S GEA GRAVITY FIELD.
    Paik, H.J.
    Alternative Energy Sources: Proceedings of the Miami International Congress on Energy and the Environment, 1981, 1 : 245 - 253
  • [49] Spaceborne Gravity Gradiometer: Ways To Improve the Accuracy of Earth's Gravity Field Models
    Milyukov, V. K.
    Filetkin, A., I
    Zhamkov, A. S.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2022, 134 (04) : 511 - 522
  • [50] Evaluation of recent Earth's global gravity field models with terrestrial gravity data
    Karpik, Alexander P.
    Kanushin, Vadim F.
    Ganagina, Irina G.
    Goldobin, Denis N.
    Kosarev, Nikolay S.
    Kosareva, Alexandra M.
    CONTRIBUTIONS TO GEOPHYSICS AND GEODESY, 2016, 46 (01): : 1 - 11