A Physical experimental study of variable-order fractional integrator and differentiator

被引:71
|
作者
Sheng, H. [1 ,3 ]
Sun, H. G. [2 ,3 ]
Coopmans, C. [3 ]
Chen, Y. Q. [3 ]
Bohannan, G. W. [3 ]
机构
[1] Dalian Univ Technol, Dept Elect Engn, Dalian 116024, Peoples R China
[2] Hohai Univ, Dept Engn Mech, Inst Soft Matter Mech, Nanjing 210098, Peoples R China
[3] Utah State Univ, Dept Elect & Comp Engn, CSOIS, Logan, UT 84322 USA
来源
关键词
MODEL;
D O I
10.1140/epjst/e2011-01384-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent research results have shown that many complex physical phenomena can be better described using variable-order fractional differential equations. To understand the physical meaning of variable-order fractional calculus, and better know the application potentials of variable-order fractional operators in physical processes, an experimental study of temperature-dependent variable-order fractional integrator and differentiator is presented in this paper. The detailed introduction of analogue realization of variable-order fractional operator, and the influence of temperature to the order of fractional operator are presented in particular. Furthermore, the potential applications of variable-order fractional operators in (PID mu(t))-D-lambda(t) controller and dynamic-order fractional systems are suggested.
引用
收藏
页码:93 / 104
页数:12
相关论文
共 50 条
  • [21] Analogue realisation of fractional-order integrator, differentiator and fractional PIλDμ controller
    Charef, A.
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2006, 153 (06): : 714 - 720
  • [22] Study on the performance of variable-order fractional viscoelastic models to the order function parameters
    Meng, Ruifan
    Cao, Liu
    Zhang, Qindan
    APPLIED MATHEMATICAL MODELLING, 2023, 121 : 430 - 444
  • [23] On distributed order integrator/differentiator
    Li, Yan
    Sheng, Hu
    Chen, Yang Quan
    SIGNAL PROCESSING, 2011, 91 (05) : 1079 - 1084
  • [24] On a New Definition of Fractional Variable-Order Derivative
    Sierociuk, Dominik
    Malesza, Wiktor
    Macias, Michal
    PROCEEDINGS OF THE 2013 14TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2013, : 340 - 345
  • [25] Numerical simulations for fractional variable-order equations
    Mozyrska, Dorota
    Oziablo, Piotr
    IFAC PAPERSONLINE, 2018, 51 (04): : 853 - 858
  • [26] Variable-order fuzzy fractional PID controller
    Liu, Lu
    Pan, Feng
    Xue, Dingyu
    ISA TRANSACTIONS, 2015, 55 : 227 - 233
  • [27] Variable-order fractional derivatives and their numerical approximations
    Valerio, Duarte
    da Costa, Jose Sa
    SIGNAL PROCESSING, 2011, 91 (03) : 470 - 483
  • [28] Legendre wavelet method for solving variable-order nonlinear fractional optimal control problems with variable-order fractional Bolza cost
    Kumar, Nitin
    Mehra, Mani
    ASIAN JOURNAL OF CONTROL, 2023, 25 (03) : 2122 - 2138
  • [29] Variable-order fractional calculus: A change of perspective
    Garrappa, Roberto
    Giusti, Andrea
    Mainardi, Francesco
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [30] Applications of variable-order fractional operators: a review
    Patnaik, Sansit
    Hollkamp, John P.
    Semperlotti, Fabio
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2234):