共 50 条
Life-Cycle Greenhouse Gas and Water Intensity of Cellulosic Biofuel Production Using Cholinium Lysinate Ionic Liquid Pretreatment
被引:52
|作者:
Neupane, Binod
[1
,3
]
Konda, N. V. S. N. Murthy
[1
,3
]
Singh, Seema
[1
,2
]
Simmons, Blake A.
[1
,3
]
Scown, Corinne D.
[1
,3
,4
]
机构:
[1] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA
[2] Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA 94550 USA
[3] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA
来源:
关键词:
Biomass pretreatment;
Cholinium lysinate;
Ionic liquid;
Life-cycle assessment;
Water intensity;
CORN STOVER;
ETHANOL-PRODUCTION;
DILUTE-ACID;
RICE STRAW;
BIOMASS;
SWITCHGRASS;
IMPACTS;
DELIGNIFICATION;
RECALCITRANCE;
DISSOLUTION;
D O I:
10.1021/acssuschemeng.7b02116
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Cellulosic biofuels present an opportunity to meet a significant fraction of liquid transportation fuel demand with renewable, low-carbon alternatives. Certain ionic liquids (ILs) have proven effective at facilitating hydrolysis of lignocellulose to produce fermentable sugars with high yields. Although their negligible vapor pressure and low flammability make ILs attractive solvents at the point of use, their life-cycle environmental impacts have not been investigated in the context of cellulosic biorefineries. This study provides the first life-cycle greenhouse gas (GHG) and water use inventory for biofuels produced using IL pretreatment. We explore two corn stover-to-ethanol process configurations: the conventional water-wash (WW) route and the more recently developed integrated high gravity (iHG) route, which eliminates washing steps after pretreatment. Our results are based on the use of a representative IL, cholinium lysinate ([Ch][Lys]). We find that the WW process results in unacceptably high GHG emissions. The iHG process has the potential to reduce GHG emissions per megajoule of fuel by similar to 45% relative to gasoline if [Ch][Lys] is used. Use of a protic IL with comparable performance to [Ch][Lys] could achieve GHG reductions up to 7085%. The water intensities of the WW and iHG processes are both comparable to those of other cellulosic biofuel technologies.
引用
收藏
页码:10176 / 10185
页数:10
相关论文