New numerical method for the eigenvalue problem of the 2D Schrodinger equation

被引:14
|
作者
Ixaru, L. Gr. [1 ]
机构
[1] Horia Hulubei Natl Inst Phys & Nucl Engn, Dept Theoret Phys, Bucharest, Romania
关键词
2D Schrodinger equation; Eigenvalue problem; CP methods; STURM-LIOUVILLE; WAVE-GUIDES; CP METHODS;
D O I
10.1016/j.cpc.2010.06.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The method consists in a flexible transformation of the 2D problem into a set of 1D single and coupled channel problems. This set of problems is then solved numerically by some highly tuned codes. By choosing codes based on CP methods and formulating an ad-hoc shooting procedure for the localization of the eigenenergies we obtain a version which is very efficient for speed and memory requirements. Extension of the method to more dimensions is also possible. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1738 / 1742
页数:5
相关论文
共 50 条
  • [11] A numerical method for the generalized Love integral equation in 2D
    Fermo, Luisa
    Russo, Maria Grazia
    Serafini, Giada
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2021, 14 : 46 - 57
  • [12] Numerical scheme with external complex scaling for 2D Schrodinger equation in paraxial optics
    Serov, VV
    Bychenkov, AI
    Derbov, VL
    Vinitsky, SI
    SARATOV FALL MEETING '99: LASER PHYSICS AND SPECTROSCOPY, 2000, 4002 : 79 - 83
  • [13] IMPROVEMENTS ON A NEW METHOD FOR NUMERICAL SOLUTION OF SCHRODINGER EQUATION
    GRIMM, RC
    STORER, RG
    DAVIES, B
    JOURNAL OF COMPUTATIONAL PHYSICS, 1972, 9 (03) : 538 - &
  • [14] An initial-boundary-value problem of 2D nonlinear Schrodinger equation in a strip
    Ran, Yu
    Sun, Shu-Ming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (02) : 897 - 951
  • [15] Inhomogeneous initial-boundary value problem for the 2D nonlinear Schrodinger equation
    Kaikina, Elena I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [16] Mixed Spectral Element Method for 2D Maxwell's Eigenvalue Problem
    Liu, Na
    Tobon, Luis
    Tang, Yifa
    Liu, Qing Huo
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (02) : 458 - 486
  • [17] A New Numerical Method for a Jacobi Inverse Eigenvalue Problem
    Pang, Pei-Lin
    Zang, Zhi-Hai
    Lou, Xi-juan
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 126 - 127
  • [18] A numerical procedure to solve the multichannel Schrodinger eigenvalue problem
    Ledoux, V.
    Van Daele, M.
    Vanden Berghe, G.
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 176 (03) : 191 - 199
  • [19] Thermal properties of 2D Schrodinger equation with new Morse interacting potential
    Ikot, A. N.
    Okorie, U. S.
    Okon, I. B.
    Obagboye, L. F.
    Ahmadov, A., I
    Abdullah, H. Y.
    Qadir, K. W.
    Udoh, M. E.
    Onate, C. A.
    EUROPEAN PHYSICAL JOURNAL D, 2022, 76 (11):
  • [20] NUMERICAL METHOD OF VALUE BOUNDARY PROBLEM DECISION FOR 2D EQUATION OF HEAT CONDUCTIVITY WITH FRACTIONAL DERIVATIVES
    Beybalaev, V. D.
    Shabanova, M. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2010, (05): : 244 - 251