Atmospheric continuous-variable quantum communication

被引:85
|
作者
Heim, B. [1 ,2 ,3 ]
Peuntinger, C. [1 ,2 ]
Killoran, N. [4 ]
Khan, I. [1 ,2 ]
Wittmann, C. [1 ,2 ]
Marquardt, Ch [1 ,2 ,3 ]
Leuchs, G. [1 ,2 ,3 ,5 ]
机构
[1] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, D-91058 Erlangen, Germany
[3] FAU, Erlangen Grad Sch Adv Opt Technol SAOT, D-91052 Erlangen, Germany
[4] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[5] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
quantum communication; atmospheric turbulence; polarization in atmospheric optics; KEY DISTRIBUTION; ENTANGLED STATES; FREE-SPACE; CRYPTOGRAPHY; INFORMATION; DAYLIGHT;
D O I
10.1088/1367-2630/16/11/113018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum communication experiment conducted over a point-topoint free-space link of 1.6 km in urban conditions. We study atmospheric influences on the capability of the link to act as a continuous-variable (CV) quantum channel. Continuous polarization states (that contain the signal encoding as well as a local oscillator (LO) in the same spatial mode) are prepared and sent over the link in a polarization multiplexed setting. Both signal and LO undergo the same atmospheric fluctuations. These are intrinsically auto-compensated which removes detrimental influences on the interferometric visibility. At the receiver, we measure the Q-function and interpret the data using the framework of effective entanglement (EE). We compare different state amplitudes and alphabets (two-state and four-state) and determine their optimal working points with respect to the distributed EE. Based on the high entanglement transmission rates achieved, our system indicates the high potential of atmospheric links in the field of CV quantum key distribution.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Hybrid quantum private communication with continuous-variable and discrete-variable signals
    LIU WeiQi
    PENG JinYe
    WANG Chao
    CAO ZhengWen
    HUANG Duan
    LIN DaKai
    HUANG Peng
    ZENG GuiHua
    Science China(Physics,Mechanics & Astronomy), 2015, Mechanics & Astronomy)2015 (02) : 7 - 13
  • [12] Hybrid quantum private communication with continuous-variable and discrete-variable signals
    WeiQi Liu
    JinYe Peng
    Chao Wang
    ZhengWen Cao
    Duan Huang
    DaKai Lin
    Peng Huang
    GuiHua Zeng
    Science China Physics, Mechanics & Astronomy, 2015, 58 : 1 - 7
  • [13] Hybrid quantum private communication with continuous-variable and discrete-variable signals
    Liu WeiQi
    Peng JinYe
    Wang Chao
    Cao ZhengWen
    Huang Duan
    Lin DaKai
    Huang Peng
    Zeng GuiHua
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2015, 58 (02) : 1 - 7
  • [14] Continuous-variable quantum erasing
    Filip, Radim
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 67 (04): : 421111 - 421115
  • [15] Continuous-variable quantum erasing
    Filip, R
    PHYSICAL REVIEW A, 2003, 67 (04)
  • [16] Continuous-variable quantum games
    Li, H
    Du, JF
    Massar, S
    PHYSICS LETTERS A, 2002, 306 (2-3) : 73 - 78
  • [17] Analysis of Atmospheric Continuous-Variable Quantum Key Distribution with Diverse Modulations
    Geng Chai
    Kexin Liang
    Weiqi Liu
    Peng Huang
    Zhengwen Cao
    Guihua Zeng
    International Journal of Theoretical Physics, 2019, 58 : 3746 - 3764
  • [18] Continuous-variable quantum cryptography using two-way quantum communication
    Stefano Pirandola
    Stefano Mancini
    Seth Lloyd
    Samuel L. Braunstein
    Nature Physics, 2008, 4 : 726 - 730
  • [19] Continuous-variable quantum cryptography using two-way quantum communication
    Pirandola, Stefano
    Mancini, Stefano
    Lloyd, Seth
    Braunstein, Samuel L.
    NATURE PHYSICS, 2008, 4 (09) : 726 - 730
  • [20] Analysis of Atmospheric Continuous-Variable Quantum Key Distribution with Diverse Modulations
    Chai, Geng
    Liang, Kexin
    Liu, Weiqi
    Huang, Peng
    Cao, Zhengwen
    Zeng, Guihua
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (11) : 3746 - 3764