Atmospheric continuous-variable quantum communication

被引:85
|
作者
Heim, B. [1 ,2 ,3 ]
Peuntinger, C. [1 ,2 ]
Killoran, N. [4 ]
Khan, I. [1 ,2 ]
Wittmann, C. [1 ,2 ]
Marquardt, Ch [1 ,2 ,3 ]
Leuchs, G. [1 ,2 ,3 ,5 ]
机构
[1] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, D-91058 Erlangen, Germany
[3] FAU, Erlangen Grad Sch Adv Opt Technol SAOT, D-91052 Erlangen, Germany
[4] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[5] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
quantum communication; atmospheric turbulence; polarization in atmospheric optics; KEY DISTRIBUTION; ENTANGLED STATES; FREE-SPACE; CRYPTOGRAPHY; INFORMATION; DAYLIGHT;
D O I
10.1088/1367-2630/16/11/113018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum communication experiment conducted over a point-topoint free-space link of 1.6 km in urban conditions. We study atmospheric influences on the capability of the link to act as a continuous-variable (CV) quantum channel. Continuous polarization states (that contain the signal encoding as well as a local oscillator (LO) in the same spatial mode) are prepared and sent over the link in a polarization multiplexed setting. Both signal and LO undergo the same atmospheric fluctuations. These are intrinsically auto-compensated which removes detrimental influences on the interferometric visibility. At the receiver, we measure the Q-function and interpret the data using the framework of effective entanglement (EE). We compare different state amplitudes and alphabets (two-state and four-state) and determine their optimal working points with respect to the distributed EE. Based on the high entanglement transmission rates achieved, our system indicates the high potential of atmospheric links in the field of CV quantum key distribution.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Repeaters for continuous-variable quantum communication
    Furrer, Fabian
    Munro, William J.
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [2] Atmospheric effects on continuous-variable quantum key distribution
    Wang, Shiyu
    Huang, Peng
    Wang, Tao
    Zeng, Guihua
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [3] Atmospheric continuous-variable quantum secure direct communication with orbital angular momentum multiplexing
    Cao, Zhengwen
    Liang, Zhangtao
    Zhang, Yujie
    Wang, Lei
    Chen, Xinlei
    Chai, Geng
    Journal of the Optical Society of America B: Optical Physics, 2024, 41 (10) : 2328 - 2339
  • [4] Atmospheric effect study of continuous-variable quantum key distribution
    Shen, Shi-Yang
    Zheng, Xue-Tao
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICS LETTERS, 2020, 45 (09) : 2592 - 2595
  • [5] Parameter estimation of atmospheric continuous-variable quantum key distribution
    Chai, Geng
    Cao, Zhengwen
    Liu, Weiqi
    Wang, Shiyu
    Huang, Peng
    Zeng, Guihua
    PHYSICAL REVIEW A, 2019, 99 (03)
  • [6] Temperature effects on atmospheric continuous-variable quantum key distribution
    张淑静
    马鸿鑫
    汪翔
    周淳
    鲍皖苏
    张海龙
    Chinese Physics B, 2019, (08) : 60 - 65
  • [7] Temperature effects on atmospheric continuous-variable quantum key distribution
    Zhang, Shu-Jing
    Ma, Hong-Xin
    Wang, Xiang
    Zhou, Chun
    Bao, Wan-Su
    Zhang, Hai-Long
    CHINESE PHYSICS B, 2019, 28 (08)
  • [8] Wavelength attack on atmospheric continuous-variable quantum key distribution
    Tan, Xin
    Guo, Ying
    Zhang, Ling
    Huang, Jingzheng
    Shi, Jinjing
    Huang, Duan
    PHYSICAL REVIEW A, 2021, 103 (01)
  • [9] Metro dispatching network using continuous-variable quantum communication
    Fu, Siliang
    Li, Kaidi
    Yu, Tianjian
    Wu, Xun
    Journal of Railway Science and Engineering, 2022, 19 (06) : 1521 - 1529
  • [10] Redundancy and Synergy of an Entangling Cloner in Continuous-Variable Quantum Communication
    Usenko, Vladyslav C.
    ENTROPY, 2022, 24 (10)