Alterations in brain connectivity due to plasticity and synaptic delay

被引:14
|
作者
Lameu, E. L. [1 ]
Macau, E. E. N. [1 ,2 ]
Borges, F. S. [3 ]
Iarosz, K. C. [3 ]
Caldas, I. L. [3 ]
Borges, R. R. [4 ]
Protachevicz, P. R. [5 ]
Viana, R. L. [6 ]
Batista, A. M. [3 ,5 ,7 ]
机构
[1] Natl Inst Space Res, Sao Jose Dos Campos, SP, Brazil
[2] Univ Fed Sao Paulo, Sao Jose Dos Campos, Brazil
[3] Univ Sao Paulo, Inst Phys, Sao Jose Dos Campos, Brazil
[4] Fed Technol Univ Parana, Dept Math, Ponta Grossa, Brazil
[5] Univ Estadual Ponta Grossa, Sci Postgrad, Ponta Grossa, Brazil
[6] Univ Fed Parana, Dept Phys, Curitiba, PR, Brazil
[7] Univ Estadual Ponta Grossa, Dept Math & Stat, Ponta Grossa, Brazil
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2018年 / 227卷 / 5-6期
基金
巴西圣保罗研究基金会;
关键词
TIMING-DEPENDENT PLASTICITY; SYNCHRONIZATION; NETWORKS; NEURONS;
D O I
10.1140/epjst/e2018-00090-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Brain plasticity refers to brain's ability to change neuronal connections, as a result of environmental stimuli, new experiences, or damage. In this work, we study the effects of the synaptic delay on both the coupling strengths and synchronization in a neuronal network with synaptic plasticity. We build a network of Hodgkin-Huxley neurons, where the plasticity is given by the Hebbian rules. We verify that without time delay the synapses become regulated by both the nature (excitatory or inhibitory) and the frequency of the presynaptic and postsynaptic neuron. A presynaptic excitatory (inhibitory) neuron with higher (lower) frequency enhances the synaptic strength if the postsynaptic excitatory (inhibitory) neuron has lower (higher) frequency. When the delay is increased the network presents a non-trivial topology. Regarding the synchronization, only for small values of the synaptic delay this phenomenon is observed.
引用
收藏
页码:673 / 682
页数:10
相关论文
共 50 条
  • [21] Immune Proteins in Brain Development and Synaptic Plasticity
    Boulanger, Lisa M.
    NEURON, 2009, 64 (01) : 93 - 109
  • [22] Synaptic plasticity: The brain's response to experience
    Malenka, Robert C.
    NEUROSCIENCE RESEARCH, 2008, 61 : S1 - S1
  • [23] Modulation of synaptic plasticity by brain estrogen in the hippocampus
    Mukai, Hideo
    Kimoto, Tetsuya
    Hojo, Yasushi
    Kawato, Suguru
    Murakami, Gen
    Higo, Shimpei
    Hatanaka, Yusuke
    Ogiue-Ikeda, Mari
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2010, 1800 (10): : 1030 - 1044
  • [24] Polysialic Acid in Brain Development and Synaptic Plasticity
    Hildebrandt, Herbert
    Dityatev, Alexander
    SIALOGLYCO CHEMISTRY AND BIOLOGY I: BIOSYNTHESIS, STRUCTURAL DIVERSITY AND SIALOGLYCOPATHOLOGIES, 2015, 366 : 55 - 96
  • [25] Alterations in Synaptic Connectivity and Synaptic Transmission in Alzheimer's Disease with High Physical Activity
    Wu, Can
    Ruan, Tingting
    Yuan, Yalan
    Xu, Chunshuang
    Du, Lijuan
    Wang, Fang
    Xu, Shujun
    JOURNAL OF ALZHEIMERS DISEASE, 2024, 99 (03) : 1005 - 1022
  • [26] Arginine Vasopressin, Synaptic Plasticity, and Brain Networks
    Marcinkowska, Anna B.
    Biancardi, Vinicia C.
    Winklewski, Pawel J.
    CURRENT NEUROPHARMACOLOGY, 2022, 20 (12) : 2292 - 2302
  • [27] Synaptic Plasticity: The Brain's Response to Experience
    Malenka, Robert C.
    BIOLOGICAL PSYCHIATRY, 2009, 65 (08) : 2S - 2S
  • [28] IMMUNE PROTEINS IN BRAIN DEVELOPMENT AND SYNAPTIC PLASTICITY
    Boulanger, Lisa M.
    SCHIZOPHRENIA BULLETIN, 2011, 37 : 104 - 104
  • [29] Transmitter release and synaptic plasticity in the mammalian brain
    Siegelbaum, SA
    Bolshakov, VY
    BIOPHYSICAL JOURNAL, 1996, 70 (02) : TUPM4 - TUPM4
  • [30] Synaptic plasticity in the diabetic brain: advanced aging?
    Artola, A
    Kamal, A
    Ramakers, GMJ
    Gardoni, F
    Di Luca, M
    Biessels, GJ
    Cattabeni, F
    Gispen, WH
    PLASTICITY IN THE ADULT BRAIN: FROM GENES TO NEUROTHERAPY, 2002, 138 : 305 - 314