Transfer Learning with Deep Convolutional Neural Network for SAR Target Classification with Limited Labeled Data

被引:318
|
作者
Huang, Zhongling [1 ,2 ,3 ]
Pan, Zongxu [2 ,3 ]
Lei, Bin [2 ,3 ]
机构
[1] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 101408, Peoples R China
[2] Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
[3] Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
SAR target recognition; deep CNNs; transfer learning; stacked convolutional auto-encoders; SPARSE REPRESENTATION; RECOGNITION;
D O I
10.3390/rs9090907
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
t Tremendous progress has been made in object recognition with deep convolutional neural networks (CNNs), thanks to the availability of large-scale annotated dataset. With the ability of learning highly hierarchical image feature extractors, deep CNNs are also expected to solve the Synthetic Aperture Radar (SAR) target classification problems. However, the limited labeled SAR target data becomes a handicap to train a deep CNN. To solve this problem, we propose a transfer learning based method, making knowledge learned from sufficient unlabeled SAR scene images transferrable to labeled SAR target data. We design an assembled CNN architecture consisting of a classification pathway and a reconstruction pathway, together with a feedback bypass additionally. Instead of training a deep network with limited dataset from scratch, a large number of unlabeled SAR scene images are used to train the reconstruction pathway with sacked convolutional auto-encoders (SCAE) at first. Then, these pre-trained convolutional layers are reused to transfer knowledge to SAR target classification tasks, with feedback bypass introducing the reconstruction loss simultaneously. The experimental results demonstrate that transfer learning leads to a better performance in the case of scarce labeled training data and the additional feedback bypass with reconstruction loss helps to boost the capability of classification pathway.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Voice disorder classification using convolutional neural network based on deep transfer learning
    Peng, Xiangyu
    Xu, Huoyao
    Liu, Jie
    Wang, Junlang
    He, Chaoming
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] Voice disorder classification using convolutional neural network based on deep transfer learning
    Xiangyu Peng
    Huoyao Xu
    Jie Liu
    Junlang Wang
    Chaoming He
    Scientific Reports, 13
  • [23] Bangladeshi Native Vehicle Classification Based on Transfer Learning with Deep Convolutional Neural Network
    Hasan, Md Mahibul
    Wang, Zhijie
    Hussain, Muhammad Ather Iqbal
    Fatima, Kaniz
    SENSORS, 2021, 21 (22)
  • [24] Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network
    Zhang, Kaishuo
    Robinson, Neethu
    Lee, Seong-Whan
    Guan, Cuntai
    NEURAL NETWORKS, 2021, 136 : 1 - 10
  • [25] A Transfer Learning Method with Deep Convolutional Neural Network for Diffuse Lung Disease Classification
    Shouno, Hayaru
    Suzuki, Satoshi
    Kido, Shoji
    NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 199 - 207
  • [26] Vocal cord lesions classification based on deep convolutional neural network and transfer learning
    Zhao, Qian
    He, Yuqing
    Wu, Yanda
    Huang, Dongyan
    Wang, Yang
    Sun, Cai
    Ju, Jun
    Wang, Jiasen
    Jianshuo-li Mahr, Jeremy
    MEDICAL PHYSICS, 2022, 49 (01) : 432 - 442
  • [27] SAR TARGET CLASSIFICATION WITH LIMITED DATA VIA DATA DRIVEN ACTIVE LEARNING
    Zhou, Yue
    Jiang, Xue
    Li, Zhou
    Liu, Xingzhao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2475 - 2478
  • [28] Convolutional neural network learning for generic data classification
    Han, Huimei
    Li, Ying
    Zhu, Xingquan
    INFORMATION SCIENCES, 2019, 477 : 448 - 465
  • [29] Complex-Valued Full Convolutional Neural Network for SAR Target Classification
    Yu, Lingjuan
    Hu, Yuehong
    Xie, Xiaochun
    Lin, Yun
    Hong, Wen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) : 1752 - 1756
  • [30] SAR detection for small target ship based on deep convolutional neural network
    Hu C.
    Chen C.
    He C.
    Pei H.
    Zhang J.
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2019, 27 (03): : 397 - 405and414