Gradient-based scales and similarity laws in the stable boundary layer

被引:77
|
作者
Sorbjan, Z. [1 ,2 ]
机构
[1] Marquette Univ, Dept Phys, Milwaukee, WI 53201 USA
[2] Polish Acad Sci, Inst Geophys, Warsaw, Poland
基金
美国国家科学基金会;
关键词
gradient-based scaling; SHEBA data; similarity theory; stable boundary layer; ATMOSPHERIC-TURBULENCE CHARACTERISTICS; INHOMOGENEOUS LAND-SURFACE; VERTICAL-DISTRIBUTION; RICHARDSON-NUMBER; SELF-CORRELATION; PRANDTL NUMBER; ENERGY-BUDGET; PART I; SHEBA; TEMPERATURE;
D O I
10.1002/qj.638
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Three gradient-based scaling systems for the stably stratified boundary layer are introduced and examined by using data collected during the SHEBA field programme in the Arctic. The resulting similarity functions for fluxes and variances are expressed in an analytical form, which is expected to be essentially unaffected by self-correlation in a very stable regime. The flux Richardson number Rf is found to be proportional to the Richardson number Ri, with the proportionality coefficient varying slightly with stability, from 1.11 to 1.47. The Prandtl number decreases from 0.9 in nearly neutral conditions to 0.7 for larger values of Ri. The negative correlation coefficient between the vertical velocity and temperature, -r(w theta), has a local maximum at Ri of about 0.08, and monotonically decreases with larger values of the Richardson number. The turbulent kinetic energy budget indicates that for Ri > 0.7, turbulence must be non-stationary, i.e. decaying or sporadic. Turbulence within the stably stratified boundary layer can be classified by four regimes: 'nearly neutral' (0 < Ri < 0.02), 'weakly stable' (0.02 < Ri < 0.12), 'very stable' (0.12 < Ri < 0.7), and 'extremely stable' (Ri > 0.7). Copyright (C) 2010 Royal Meteorological Society
引用
收藏
页码:1243 / 1254
页数:12
相关论文
共 50 条
  • [41] The Martian Planetary Boundary Layer: Turbulent kinetic energy and fundamental similarity scales
    Martinez, G. M.
    Valero, F.
    Vazquez, L.
    Elliott, H. M.
    SOLAR SYSTEM RESEARCH, 2013, 47 (06) : 446 - 453
  • [42] The Martian Planetary Boundary Layer: Turbulent kinetic energy and fundamental similarity scales
    G. M. Martínez
    F. Valero
    L. Vázquez
    H. M. Elliott
    Solar System Research, 2013, 47 : 446 - 453
  • [43] Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers
    Monkewitz, Peter A.
    Chauhan, Kapil A.
    Nagib, Hassan M.
    PHYSICS OF FLUIDS, 2008, 20 (10)
  • [44] MULTIPLE MASTER LENGTH SCALES FOR STABLE ATMOSPHERIC BOUNDARY-LAYER
    DEGRAZIA, GA
    DEOLIVEIRA, AP
    GOEDERT, J
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-GEOPHYSICS AND SPACE PHYSICS, 1992, 15 (04): : 409 - 416
  • [45] Outlier Problem in Evaluating Similarity Functions in the Stable Atmospheric Boundary Layer
    Grachev, Andrey A.
    Andreas, Edgar L.
    Fairall, Christopher W.
    Guest, Peter S.
    Persson, P. Ola G.
    BOUNDARY-LAYER METEOROLOGY, 2012, 144 (02) : 137 - 155
  • [46] Outlier Problem in Evaluating Similarity Functions in the Stable Atmospheric Boundary Layer
    Andrey A. Grachev
    Edgar L. Andreas
    Christopher W. Fairall
    Peter S. Guest
    P. Ola G. Persson
    Boundary-Layer Meteorology, 2012, 144 : 137 - 155
  • [47] A PARAMETERIZED STUDY ON THE LOCAL SIMILARITY THEORY IN THE STABLE BOUNDARY LAYER MODEL
    李兴生
    唐承贤
    许小金
    Science in China,SerB, 1991, Ser.B1991 (09) : 1131 - 1144
  • [48] Application of gradient-based edge detection on defined surface feature boundary
    Mohd Razali A.F.
    Ismail M.F.
    Annals of Emerging Technologies in Computing, 2021, 5 (Special issue 5) : 129 - 136
  • [49] Two Gradient-Based Control Laws on SE(3) Derived from Distance Functions
    Montenbruck, Jan Maximilian
    Schmidt, Gerd S.
    Kecskemethy, Andres
    Allgoewer, Frank
    INTERDISCIPLINARY APPLICATIONS OF KINEMATICS, 2015, 26 : 31 - 41
  • [50] Alternate scales for turbulent boundary layer on transitional rough walls: Universal log laws
    Afzal, Noor
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (04): : 0412021 - 04120216