Adaptive classification of hyperspectral images using local consistency

被引:6
|
作者
Bian, Xiaoyong [1 ,2 ]
Zhang, Xiaolong [1 ,2 ]
Liu, Renfeng [3 ]
Ma, Li [4 ]
Fu, Xiaowei [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430065, Peoples R China
[2] Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430065, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Automat, Sci & Technol Multispectral Informat Proc Lab, Wuhan 430074, Peoples R China
[4] China Univ Geosci, Fac Mech & Elect Informat Engn, Wuhan 430074, Peoples R China
关键词
hyperspectral images; local binary pattern; support vector machine; active learning; isotropic; anisotropic; local image patches; NEAREST-NEIGHBOR;
D O I
10.1117/1.JEI.23.6.063014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A spatial method of multistructure sampling based rotation-invariant uniform local binary pattern (named MsLBPriu2) for classification of hyperspectral images is proposed. This method exploits the local property (micro-/macrostructure) of local image patches encoded in the classifier by considering a local neighboring structure around each central pixel and can well suppress the difference of rotational textures for each multi-cluster class. The proposed method is simple yet efficient for extracting isotropic and anisotropic spatial features from local image patches via different extended sampling on circular regions and elliptical ones with four different rotational angles. Furthermore, the rotation-invariant characteristic of extracted isotropic features is achieved by the inclusion of a rotation-invariant uniform LBP operator. Moreover, the proposed method becomes more robust with respect to the within-class variation. Finally, different classifiers, support vector machine, K-nearest neighbor, and linear discriminant analysis, are compared to evaluate MsLBPriu2 and other feature sets/entropy-based query-by-bagging active learning. We demonstrate the performance of our approach on four different hyperspectral remote sensing images. Experimental results show that the new set of reduced spatial features has a better performance than a variety of state-of-the-art classification algorithms. (C) 2014 SPIE and IS&T
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Local receptive field constrained stacked sparse autoencoder for classification of hyperspectral images
    Wan, Xiaoqing
    Zhao, Chunhui
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (06) : 1011 - 1020
  • [32] Improved classification and segmentation of hyperspectral images using spectral warping
    Demir, B.
    Ertuerk, S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (12) : 3657 - 3663
  • [33] UNSUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGES BY USING LINEAR UNMIXING ALGORITHM
    Luo, Bin
    Chanussot, Jocelyn
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2877 - 2880
  • [34] Classification of hyperspectral images using fusion of CNN and MiniGCN with SVM
    Wu, Wenbing
    Sadad, Tariq
    Safran, Mejdl
    Alfarhood, Sultan
    Yuan, Xiaojian
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 3601 - 3617
  • [35] Feature Extraction and Classification of Hyperspectral Images Using Hierarchical Network
    Gao, Yanlong
    Feng, Yan
    Yu, Xumin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) : 287 - 291
  • [36] Varietal Classification of Rice Seeds Using RGB and Hyperspectral Images
    Fabiyi, Samson Damilola
    Vu, Hai
    Tachtatzis, Christos
    Murray, Paul
    Harle, David
    Dao, Trung Kien
    Andonovic, Ivan
    Ren, Jinchang
    Marshall, Stephen
    IEEE ACCESS, 2020, 8 : 22493 - 22505
  • [37] Classification of Hyperspectral Images Using Subspace Projection Feature Space
    Aghaee, Reza
    Mokhtarzade, Mehdi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (09) : 1803 - 1807
  • [38] CLASSIFICATION OF BRAIN TISSUES IN HYPERSPECTRAL IMAGES USING VISION TRANSFORMERS
    Cruz-Guerrero, Ines A.
    Mendoza-Chavarria, Juan N.
    Campos-Delgado, Daniel U.
    Fabelo, Himar
    Ortega, Samuel
    Marrero Callico, Gustavo
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [39] Semisupervised Classification for Hyperspectral Images Using Graph Attention Networks
    Sha, Anshu
    Wang, Bin
    Wu, Xiaofeng
    Zhang, Liming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (01) : 157 - 161
  • [40] Using Wavelet Support Vector Machine for Classification of Hyperspectral Images
    Banki, Mohammad Hossein
    Shirazi, Ali Asghar Beheshti
    2009 SECOND INTERNATIONAL CONFERENCE ON MACHINE VISION, PROCEEDINGS, ( ICMV 2009), 2009, : 154 - 157