Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell

被引:156
|
作者
Huang, Sheng-Yang [1 ]
Ganesan, Prabhu [1 ]
Popov, Branko N. [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Ctr Electrochem Engn, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Titania; Cathode catalyst support; Corrosion resistance; Oxygen reduction reaction; Proton exchange membrane fuel cell; RUTHENIUM CATALYST; SURFACE SCIENCE; REDUCTION; OXIDATION; DIOXIDE; AREA; PROMOTION; CORROSION; HYDROGEN; OXIDES;
D O I
10.1016/j.apcatb.2010.11.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titania supported Pt electrocatalysts (Pt/TiO2) were synthesized and investigated as alternative cathode catalysts for polymer electrolyte membrane fuel cells (PEMFCs). Transmission electron microscope (TEM) images revealed uniform distribution of Pt nanoparticles (d(Pt) = 3-5 nm) on the TiO2 support. The Pt/TiO2 electrocatalyst showed comparable activity to that of a commercial Pt/C catalyst (TKK) in fuel cell studies. The fuel cell accelerated stress test (AST) for catalysts demonstrated similar stability for Pt/TiO2 and Pt/C. In-house developed accelerated durability test (ADT, continuous potential cycling between 0.6 and 1.4 V) in half-cell condition indicated nearly ten-fold higher ORR activity (1.20 mA cm(-2)) when compared to the Pt/C catalyst (0.13 mA cm(-2)). The Pt/C catalyst showed no activity in fuel cell testing after 2000 potential cycles due to severe carbon corrosion. Pt dissolution, and catalyst particle sintering. Conversely, the Pt/TiO2 electrocatalyst showed only a small voltage loss (0.09 V at 0.8 A cm(-2)) even after 4000 cycles. Furthermore, the ADT results showed excellent stability for the Pt/TiO2 electrocatalysts at high potentials in terms of minimum loss in the Pt electrochemical surface area (ECSA). The high stability of the Pt/TiO2 electrocatalyst synthesized in this investigation offers a new approach to improve the reliability and durability of PEM-based fuel cell cathode catalysts. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条
  • [31] Optimization studies of a polymer electrolyte membrane fuel cell with multiple catalyst layers
    Srinivasarao, Modekurti
    Bhattacharyya, Debangsu
    Rengaswamy, Raghunathan
    JOURNAL OF POWER SOURCES, 2012, 206 : 197 - 203
  • [32] Numerical analysis of the manipulated high performance catalyst layer design for polymer electrolyte membrane fuel cell
    Yang, Tien-Fu
    Cheng, Chin-Hsien
    Su, Ay
    Yu, Tzyy-Lung
    Hourng, Lih-Wu
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (15) : 1937 - 1948
  • [33] Highly selective methane generation by carbon dioxide electroreduction on carbon-supported platinum catalyst in polymer electrolyte fuel cell
    Umeda, Minoru
    Yoshida, Yuta
    Matsuda, Shofu
    ELECTROCHIMICA ACTA, 2020, 340
  • [34] Carbon-supported hafnium oxynitride as cathode catalyst for polymer electrolyte membrane fuel cells
    Chisaka, Mitsuharu
    Iijima, Tomohiro
    Yaguchi, Tatsuro
    Sakurai, Yoji
    ELECTROCHIMICA ACTA, 2011, 56 (12) : 4581 - 4588
  • [35] Catalyst, Membrane, Free Electrolyte Challenges, and Pathways to Resolutions in High Temperature Polymer Electrolyte Membrane Fuel Cells
    Myles, Timothy
    Bonville, Leonard
    Maric, Radenka
    CATALYSTS, 2017, 7 (01)
  • [36] Composite membrane for polymer electrolyte membrane fuel cell
    Kim, CS
    Yang, TH
    Kwak, SH
    Yoon, KH
    SOLID STATE IONICS: THE SCIENCE AND TECHNOLOGY OF IONS IN MOTION, 2004, : 127 - 134
  • [37] Direct Glucose Fuel Cell: Noble Metal Catalyst Anode Polymer Electrolyte Membrane Fuel Cell with Glucose Fuel
    Apblett, Christopher A.
    Ingersoll, David
    Sarangapani, Sarang
    Kelly, Michael
    Atanassov, Plamen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (01) : B86 - B89
  • [38] Platinum-catalyzed polymer electrolyte membrane for fuel cells
    Hwang, TJ
    Shao, H
    Richards, N
    Schmitt, J
    Hunt, A
    Lin, WY
    NEW MATERIALS FOR BATTERIES AND FUEL CELLS, 2000, 575 : 239 - 246
  • [39] Effect of humidification and cell heating on the operational stability of polymer electrolyte membrane fuel cell
    Johnson, N. Allwyn Blessing
    Sen, Ashis Kumar
    Das, Sarit K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (90) : 35267 - 35279
  • [40] Direct preparation of core-shell platinum cathode in membrane electrode assembly catalyst layer for polymer electrolyte fuel cell
    Fukunaga, Hiroshi
    Kachi, Kazuhiro
    Takimoto, Daisuke
    Mochizuki, Dai
    Sugimoto, Wataru
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (28) : 14547 - 14551