Optimal Deep Reinforcement Learning for Intrusion Detection in UAVs

被引:37
|
作者
Praveena, V. [1 ]
Vijayaraj, A. [2 ]
Chinnasamy, P. [3 ]
Ali, Ihsan [4 ]
Alroobaea, Roobaea [5 ]
Alyahyan, Saleh Yahya [6 ]
Raza, Muhammad Ahsan [7 ]
机构
[1] Dr NGP Inst Technol, Dept Comp Sci & Engn, Coimbatore 641048, Tamil Nadu, India
[2] Vignans Fdn Sci Technol & Res, Dept Informat Technol, Guntur 522213, Andhra Pradesh, India
[3] Sri Shakthi Inst Engn & Technol, Dept Informat Technol, Coimbatore 641062, Tamil Nadu, India
[4] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia
[5] Taif Univ, Dept Comp Sci, Coll Comp & Informat Technol, At Taif 21944, Saudi Arabia
[6] Shaqra Univ, Dept Comp Sci, Community Coll Dwadmi, Shaqraa 11961, Saudi Arabia
[7] Bahauddin Zakariya Univ, Dept Informat Technol, Multan 60000, Pakistan
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 70卷 / 02期
关键词
Intrusion detection; UAV networks; reinforcement learning; deep learning; parameter optimization; ALGORITHM;
D O I
10.32604/cmc.2022.020066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, progressive developments have been observed in recent technologies and the production cost has been continuously decreasing. In such scenario, Internet of Things (IoT) network which is comprised of a set of Unmanned Aerial Vehicles (UAV), has received more attention from civilian to military applications. But network security poses a serious challenge to UAV networks whereas the intrusion detection system (IDS) is found to be an effective process to secure the UAV networks. Classical IDSs are not adequate to handle the latest computer networks that possess maximum bandwidth and data traffic. In order to improve the detection performance and reduce the false alarms generated by IDS, several researchers have employed Machine Learning (ML) and Deep Learning (DL) algorithms to address the intrusion detection problem. In this view, the current research article presents a deep reinforcement learning technique, optimized by Black Widow Optimization (DRL-BWO) algorithm, for UAV networks. In addition, DRL involves an improved reinforcement learning-based Deep Belief Network (DBN) for intrusion detection. For parameter optimization of DRL technique, BWO algorithm is applied. It helps in improving the intrusion detection performance of UAV networks. An extensive set of experimental analysis was performed to highlight the supremacy of the proposed model. From the simulation values, it is evident that the proposed method is appropriate as it attained high precision, recall, F-measure, and accuracy values such as 0.985, 0.993, 0.988, and 0.989 respectively.
引用
收藏
页码:2639 / 2653
页数:15
相关论文
共 50 条
  • [11] High-performance intrusion detection system for networked UAVs via deep learning
    Abu Al-Haija, Qasem
    Al Badawi, Ahmad
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10885 - 10900
  • [12] High-performance intrusion detection system for networked UAVs via deep learning
    Qasem Abu Al-Haija
    Ahmad Al Badawi
    Neural Computing and Applications, 2022, 34 : 10885 - 10900
  • [13] Deep Q-Learning Based Reinforcement Learning Approach for Network Intrusion Detection
    Alavizadeh, Hooman
    Alavizadeh, Hootan
    Jang-Jaccard, Julian
    COMPUTERS, 2022, 11 (03)
  • [14] Deep-Reinforcement-Learning-Based Intrusion Detection in Aerial Computing Networks
    Tao, Jing
    Han, Ting
    Li, Ruidong
    IEEE NETWORK, 2021, 35 (04): : 66 - 72
  • [15] A Deep Reinforcement Learning based Intrusion Detection Strategy for Smart Vehicular Networks
    Wang, Zhihao
    Jiang, Dingde
    Lv, Zhihan
    Song, Houbing
    IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [16] Intrusion Detection System for Industrial Internet of Things Based on Deep Reinforcement Learning
    Tharewal, Sumegh
    Ashfaque, Mohammed Waseem
    Banu, Sayyada Sara
    Uma, Perumal
    Hassen, Samar Mansour
    Shabaz, Mohammad
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [17] Proactive Handover Decision for UAVs with Deep Reinforcement Learning
    Jang, Younghoon
    Raza, Syed M.
    Kim, Moonseong
    Choo, Hyunseung
    SENSORS, 2022, 22 (03)
  • [18] Deep Reinforcement Learning for Trajectory Generation and Optimisation of UAVs
    Akhtar, Mishma
    Maqsood, Adnan
    Verbeke, Mathias
    2023 10TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN AIR AND SPACE TECHNOLOGIES, RAST, 2023,
  • [19] An Adaptive Intrusion Detection System for WSN using Reinforcement Learning and Deep Classification
    Hussain, Saqib
    He, Jingsha
    Zhu, Nafei
    Mughal, Fahad Razaque
    Hussain, Muhammad Iftikhar
    Algarni, Abeer D.
    Ahmad, Sadique
    Zarie, Mira M.
    Ateya, Abdelhamied A.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [20] UAVs Handover Decision using Deep Reinforcement Learning
    Jang, Younghoon
    Raza, Syed M.
    Choo, Hyunseung
    Kim, Moonseong
    PROCEEDINGS OF THE 2022 16TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2022), 2022,