Study of Microstructure, Tribological, Thermal and Mechanical Properties of Ultrahigh Molecular Weight Polyethylene (UHMWPE)/Copper Nanocomposite

被引:1
|
作者
Srivastava, Saurabh [1 ]
Kumar, A. V. Ramesh [2 ]
Singh, Nirbhay [1 ]
机构
[1] Def Mat & Stores Res & Dev Estab, GT Rd, Kanpur 208013, Uttar Pradesh, India
[2] Naval Phys & Oceanog Lab, Kochi 682201, Kerala, India
关键词
Nanocomposites; melt mixing; microstructure; tribological property; BEHAVIOR; COMPOSITES;
D O I
10.1063/1.3504307
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanomaterials possess many special physical and chemical properties based on small size, surface and interface effects. The use of nanomaterials, as additives, will provide a well bonded interface that will enable polymer based nano composites to exhibit higher performance. Higher performance is very much influenced by various techniques of preparation of nanocomposite. Melt mixing technique involving a co-rotating intermeshing twin screw extruder for preparation of nanocomposite is an effective processing method and can play an important role in preparation of nanocomposite with uniform mircostructure. Currently, there is considerable interest in ultra high molecular weight polyethylene (UHMWPE) because of their superior abrasion resistance, reduced coefficient of friction, enhanced work of fracture and improved moisture barrier. The UHMWPE/HDPE blend has drawn much attention as a promising human joint repair material because such a blend has higher wear resistance than neat UHMWPE. Keeping these advantages in mind, attempts have been made to fabricate composites of UHMWPE blended with HDPE and nano fillers of Copper with various weight percentages viz.(i)0.1%, (ii)0.5%, (iii)1.0% and 5.0%. The composites have been prepared by melt mixing process and various properties such as (i) Microstructure (ii) Tribological (iii) Thermal and (iv) Mechanical have been evaluated. The paper compares these properties of nanocomposites with neat unfilled UHMWPE/HDPE blend.
引用
收藏
页码:260 / +
页数:2
相关论文
共 50 条
  • [11] Molecular Dynamics Simulation of Mechanical and Tribological Properties of Ultrahigh Molecular Weight Polyethylene Enhanced by Modified Silica Nanoparticles
    Zhou, Xincong
    Li, Binbin
    Huang, Qipeng
    Huang, Jian
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [12] Thermal and mechanical properties of ultrahigh molecular weight polyethylene/high-density polyethylene/polyethylene glycol blends
    Ahmad, Mazatusziha
    Wahit, Mat Uzir
    Kadir, Mohammed Rafiq Abdul
    Dahlan, Khairul Zaman Mohd
    Jawaid, Mohammad
    JOURNAL OF POLYMER ENGINEERING, 2013, 33 (07) : 599 - 614
  • [13] TEXTURE OF ROLLTRUDED ULTRAHIGH-MOLECULAR-WEIGHT POLYETHYLENE, UHMWPE
    KOJIMA, M
    MAGILL, JH
    MAKROMOLEKULARE CHEMIE-RAPID COMMUNICATIONS, 1991, 12 (08): : 505 - 511
  • [14] Biomimetic surface design for ultrahigh molecular weight polyethylene to improve the tribological properties
    Zhang, Bo
    Huang, Wei
    Wang, Xiaolei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2012, 226 (J8) : 705 - 713
  • [15] Biodegradation behavior and tribological properties of ultrahigh molecular weight polyethylene stabilized with α-tocopherol
    Kang, Xueqin
    Yao, Chi
    Ge, Shirong
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2019, 71 (03) : 494 - 498
  • [16] Effect of polyethylene-graft-maleic anhydride as a compatibilizer on the mechanical and tribological behaviors of ultrahigh-molecular-weight polyethylene/copper composites
    Zhou, JS
    Yan, FY
    JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 93 (02) : 948 - 955
  • [18] MECHANICAL, THERMAL, MORPHOLOGICAL AND RHEOLOGICAL PROPERTIES OF POLYPROPYLENE ULTRAHIGH MOLECULAR-WEIGHT POLYETHYLENE BLENDS
    WANG, XD
    JIN, RG
    LI, HQ
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 1995, 11 (01) : 46 - 52
  • [19] Effects of screen-grid bias voltage on the microstructure and properties of the ultrahigh molecular weight polyethylene (UHMWPE) modified by oxygen plasma
    Pei, Yanan
    Xie, Dong
    Leng, Yongxiang
    Qian, Linmao
    Sun, Hong
    Huang, Nan
    VACUUM, 2012, 86 (12) : 1945 - 1951
  • [20] Exploring the entangled state and molecular weight of UHMWPE on the microstructure and mechanical properties of HDPE/UHMWPE blends
    Tao, Gan
    Chen, Yuming
    Mu, Jingshan
    Zhang, Letian
    Ye, Chunlin
    Li, Wei
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (30)