Handwritten Character Recognition Based on Improved Convolutional Neural Network

被引:5
|
作者
Xue, Yu [1 ,2 ]
Tong, Yiling [1 ]
Yuan, Ziming [1 ]
Su, Shoubao [2 ]
Slowik, Adam [3 ]
Toglaw, Sam [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[2] Jinling Inst Technol, Jiangsu Key Lab Data Sci & Smart Software, Nanjing 211169, Peoples R China
[3] Koszalin Univ Technol, Dept Elect & Comp Sci, Sniadeckich 2, PL-75453 Koszalin, Poland
[4] Australian Coll Kuwait, Fac Business, Kuwait, State Of Kuwait, Kuwait
来源
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; handwritten character recognition; tensorflow; optimizer; CLASSIFICATION; ALGORITHM;
D O I
10.32604/iasc.2021.016884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Because of the characteristics of high redundancy, high parallelism and nonlinearity in the handwritten character recognition model, the convolutional neural networks (CNNs) are becoming the first choice to solve these complex problems. The complexity, the types of characters, the character similarity of the handwritten character dataset, and the choice of optimizers all have a great impact on the network model, resulting in low accuracy, high loss, and other problems. In view of the existence of these problems, an improved LeNet-5 model is proposed. Through increasing its convolutional layers and fully connected layers, higher quality features can be extracted. Secondly, a more complex dataset called EMNIST is selected and many experiments are carried out. After many experiments, the Adam optimization algorithm is finally chosen to optimize the network model. Then, for processing character similarity problems on the pre-processed EMNIST dataset, the dataset is divided into different parts and to be processed. A better-divided result is selected after the comparative experiments. Finally, the high accuracy recognition of handwritten characters is achieved. The experimental results show that the recognition accuracy of the handwritten characters reached at 88% in the test set, and the loss is low.
引用
收藏
页码:497 / 509
页数:13
相关论文
共 50 条
  • [31] Particle Swarm Optimization-Based Convolutional Neural Network for Handwritten Chinese Character Recognition
    Dan, Yongping
    Li, Zhuo
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (02) : 165 - 172
  • [32] Offline handwritten Devanagari modified character recognition using convolutional neural network
    Mamta Bisht
    Richa Gupta
    Sādhanā, 2021, 46
  • [33] HUTNet: An Efficient Convolutional Neural Network for Handwritten Uchen Tibetan Character Recognition
    Zhang, Guowei
    Wang, Weilan
    Zhang, Ce
    Zhao, Penghai
    Zhang, Mingkai
    BIG DATA, 2023, 11 (05) : 387 - 398
  • [34] Bangla Handwritten Character Recognition using Convolutional Neural Network with Data Augmentation
    Chowdhury, Rumman Rashid
    Hossain, Mohammad Shahadat
    Ul Islam, Raihan
    Andersson, Karl
    Hossain, Sazzad
    2019 JOINT 8TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) WITH INTERNATIONAL CONFERENCE ON ACTIVITY AND BEHAVIOR COMPUTING (ABC), 2019, : 318 - 323
  • [35] Offline handwritten Devanagari modified character recognition using convolutional neural network
    Bisht, Mamta
    Gupta, Richa
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2021, 46 (01):
  • [36] Bangla Handwritten Basic Character Recognition Using Deep Convolutional Neural Network
    Saha, Chandrika
    Faisal, Rahat Hossain
    Rahman, Md Mostafijur
    2019 JOINT 8TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) WITH INTERNATIONAL CONFERENCE ON ACTIVITY AND BEHAVIOR COMPUTING (ABC), 2019, : 190 - 195
  • [37] Handwritten Character Recognition on Android for Basic Education Using Convolutional Neural Network
    Zin, Thi Thi
    Thant, Shin
    Pwint, Moe Zet
    Ogino, Tsugunobu
    ELECTRONICS, 2021, 10 (08)
  • [38] Handwritten Chinese Character Recognition Based on Residual Neural Network
    Li, Min
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1715 - 1719
  • [39] A neural network based classifier for handwritten Chinese character recognition
    Wu, MR
    Zhang, B
    Zhang, L
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 561 - 564
  • [40] Convolutional Neural Network Based Intelligent Handwritten Document Recognition
    Abbas, Sagheer
    Alhwaiti, Yousef
    Fatima, Areej
    Khan, Muhammad A.
    Khan, Muhammad Adnan
    Ghazal, Taher M.
    Kanwal, Asma
    Ahmad, Munir
    Elmitwally, Nouh Sabri
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 4563 - 4581