Longitudinal and Transverse Correlation Functions in the φ4 Model below and near the Critical Point

被引:9
|
作者
Kaupuzs, Jevgenijs [1 ,2 ]
机构
[1] Univ Latvia, Inst Math & Comp Sci, LV-1459 Riga, Latvia
[2] Univ Liepaja, Inst Math Sci & Informat Technol, LV-3401 Liepaja, Latvia
来源
PROGRESS OF THEORETICAL PHYSICS | 2010年 / 124卷 / 04期
关键词
MONTE-CARLO; GOLDSTONE; SINGULARITIES; COEXISTENCE; BEHAVIOR; SYSTEMS;
D O I
10.1143/PTP.124.613
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have extended our method of grouping Feynman diagrams (GFD theory) to study the transverse and longitudinal correlation functions G(perpendicular to)(k) and G(parallel to)(k) in phi(4) model below the critical point (T < T-c) in the presence of an infinitesimal external field. Our method allows a qualitative analysis without cutting the perturbation series. The long-wave limit k -> 0 has been studied at T < T-c, showing that G(perpendicular to)(k) similar or equal to ak(-lambda perpendicular to) and G(parallel to)(k) similar or equal to bk(-lambda parallel to) with exponents d/2 < lambda(perpendicular to) < 2 and lambda(parallel to) = 2 lambda(perpendicular to) - d are the physical solutions of our equations at the spatial dimensionality 2 < d < 4, which coincides with the asymptotic solution at T -> T-c as well as with a nonperturbative renormalization group (RG) analysis provided in our paper. This has been confirmed also by recent Monte Carlo simulations. The exponents as well as the ratio bM(2)/a(2) (where M is magnetization) are universal. The results of the perturbative RG method are reproduced by formally setting lambda(perpendicular to) = 2, although our analysis yields lambda(perpendicular to) < 2.
引用
收藏
页码:613 / 643
页数:31
相关论文
共 50 条
  • [31] PARTIAL MOLAR FUNCTIONS NEAR CRITICAL-POINT OF AN AZEOTROPE
    KHAZANOV.NE
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY,USSR, 1971, 45 (10): : 1489 - &
  • [32] Intensity critical point correlation functions in random wave fields
    Freund, I
    OPTICS COMMUNICATIONS, 1996, 128 (4-6) : 315 - 324
  • [33] Anomalous Lattice Softening Near a Quantum Critical Point in a Transverse Ising Magnet
    Matsuura, Keisuke
    Pham Thanh Cong
    Zherlitsyn, Sergei
    Wosnitza, Joachim
    Abe, Nobuyuki
    Arima, Taka-hisa
    PHYSICAL REVIEW LETTERS, 2020, 124 (12)
  • [34] PHI-4 MODEL NEAR THE CRITICAL-POINT - THE GAUSSIAN VARIATIONAL APPROXIMATION
    KERMAN, AK
    MARTIN, C
    VAUTHERIN, D
    PHYSICAL REVIEW D, 1993, 47 (02): : 632 - 639
  • [35] Near point-source longitudinal and transverse mode ultrasonic arrays for material characterization
    Mah, M
    Schmitt, DR
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2001, 48 (03) : 691 - 698
  • [36] Generalized correlation functions for the λφ4 model
    Braghin, FL
    PHYSICAL REVIEW D, 1998, 57 (10): : 6317 - 6325
  • [37] Longitudinal and transverse scaling functions within the coherent density fluctuation model
    Antonov, A. N.
    Ivanov, M. V.
    Barbaro, M. B.
    Caballero, J. A.
    Moya de Guerra, E.
    PHYSICAL REVIEW C, 2009, 79 (04):
  • [38] DENSITY OF HE4 NEAR CRITICAL POINT
    ROACH, PR
    DOUGLASS, DH
    PHYSICAL REVIEW LETTERS, 1967, 19 (06) : 287 - &
  • [39] Quantum Ising model in transverse and longitudinal fields: chaotic wave functions
    Atas, Y. Y.
    Bogomolny, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (38)
  • [40] DISCUSSION OF DYNAMICS OF ISING MODEL NEAR CRITICAL POINT
    HALPERIN, BI
    SUZUKI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1969, S 26 : 156 - &