A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications

被引:127
|
作者
Kahwaji, Samer [1 ]
Johnson, Michel B. [2 ]
Kheirabadi, Ali C. [3 ]
Groulx, Dominic [2 ,3 ]
White, Mary Anne [1 ,2 ]
机构
[1] Dalhousie Univ, Dept Chem, POB 15000, Halifax, NS B3H 4R2, Canada
[2] Dalhousie Univ, Clean Technol Res Inst, POB 15000, Halifax, NS B3H 4R2, Canada
[3] Dalhousie Univ, Dept Mech Engn, POB 15000, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Phase change material; PCM; Paraffin; Thermal properties; Thermal energy storage; LATENT-HEAT STORAGE; ION BATTERIES; THERMOPHYSICAL PROPERTIES; ELECTRONIC COMPONENTS; BUILDING APPLICATIONS; TRANSFER ENHANCEMENT; TEMPERATURE RISE; WATER-HEATER; FATTY-ACIDS; PCM;
D O I
10.1016/j.energy.2018.08.068
中图分类号
O414.1 [热力学];
学科分类号
摘要
Paraffins are useful as phase change materials (PCMs) for thermal energy storage (TES) via their melting transition, Imps. Paraffins with T-mpt between 30 and 60 degrees C have particular utility in improving the efficiency of solar energy capture systems and for thermal buffering of electronics and batteries. However, there remain critical knowledge gaps concerning the properties of paraffin PCMs, including their long-term reliability and chemical compatibility. Therefore, we have undertaken a thorough, comprehensive study of the thermophysical properties, long-term stability and chemical compatibility of six widely useful paraffin PCMs. The PCMs investigated include three pure alkanes, nonadecane, eicosane, docosane, and three commercial blends of paraffin waxes. For each PCM, we accurately determined T-mpt, the latent heat of fusion, the density of the solid phase and the temperature dependences of the heat capacity and thermal conductivity. For the first time, we show the thermal stability of the PCMs after 3000 melt-freeze cycles, and their chemical compatibilities with 17 different metallic and plastic materials used for encapsulation and in composites and fillers. These results provide necessary information to improve energy modeling and analysis for existing and emerging TES applications, and guide the selection of reliable paraffin PCMs and encapsulation materials for such applications. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1169 / 1182
页数:14
相关论文
共 50 条
  • [21] Phase change materials for thermal management and energy storage: A review
    Lawag, Radhi Abdullah
    Ali, Hafiz Muhammad
    Journal of Energy Storage, 2022, 55
  • [22] Thermal properties of paraffin based nano-phase change material as thermal energy storage
    Amin, Muhammad
    Afriyanti, Fitri
    Putra, Nandy
    2ND INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE (I-TREC) 2017, 2018, 105
  • [23] Solar-thermal conversion and thermal energy storage of different phase change materials
    Emadoddin Erfani Farsi Eidgah
    Mohammad Mustafa Ghafurian
    Ali Tavakoli
    Ali Mortazavi
    Ali Kianifar
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 8051 - 8060
  • [24] Solar-thermal conversion and thermal energy storage of different phase change materials
    Eidgah, Emadoddin Erfani Farsi
    Ghafurian, Mohammad Mustafa
    Tavakoli, Ali
    Mortazavi, Ali
    Kianifar, Ali
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (16) : 8051 - 8060
  • [25] Solar thermal energy storage and heat pumps with phase change materials
    Kapsalis, V.
    Karamanis, D.
    APPLIED THERMAL ENGINEERING, 2016, 99 : 1212 - 1224
  • [26] Thermal energy storage implementation using phase change materials for solar cooling and refrigeration applications
    Oro, Eduard
    Gil, Antoni
    Miro, Laia
    Peiro, Gerard
    Alvarez, Servando
    Cabeza, Luisa F.
    1ST INTERNATIONAL CONFERENCE ON SOLAR HEATING AND COOLING FOR BUILDINGS AND INDUSTRY (SHC 2012), 2012, 30 : 947 - 956
  • [27] Phase change materials based thermal energy storage for solar energy systems
    Ali, Hafiz Muhammad
    JOURNAL OF BUILDING ENGINEERING, 2022, 56
  • [28] Thermal Enhancement of Solar Energy Storage Using Phase Change Materials
    Darwesh, Bahzad Darwesh
    Hamakhan, Idres Azzat
    Yaqob, Banipal Nanno
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2022, 40 (03) : 758 - 766
  • [29] A Review of Phase Change Materials as an Alternative for Solar Thermal Energy Storage
    Wani, Chandrakant
    Loharkar, Praveen Kumar
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (09) : 10264 - 10267
  • [30] Exfoliated graphite/paraffin nanocomposites as phase change materials for thermal energy storage application
    Huang, J.
    Wang, T. Y.
    Wang, C. H.
    Rao, Z. H.
    MATERIALS RESEARCH INNOVATIONS, 2011, 15 (06) : 422 - 427