OPTIMAL DESIGNS FOR TWO-LEVEL FACTORIAL EXPERIMENTS WITH BINARY RESPONSE

被引:20
|
作者
Yang, Jie [1 ]
Mandal, Abhyuday [2 ]
Majumdar, Dibyen [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Univ Georgia, Dept Stat, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Cylindrical algebraic decomposition; D-optimality; information matrix; full factorial design; generalized linear model; uniform design; GENERALIZED LINEAR-MODELS;
D O I
10.5705/ss.2010.080
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of obtaining locally D-optimal designs for factorial experiments with qualitative factors at two levels each and with binary response. For the 2(2) factorial experiment with main-effects model, we obtain optimal designs analytically in special cases and demonstrate how to obtain a solution in the general case using cylindrical algebraic decomposition. The optimal designs are shown to be robust to the choice of the assumed values of the prior, and when there is no basis to make an informed choice of the assumed values we recommend the use of the uniform design that assigns equal number of observations to each of the four points. For the general 2(k) case we show that the uniform design has a maximin property.
引用
收藏
页码:885 / 907
页数:23
相关论文
共 50 条
  • [21] Binary Column Assignment Method for Two-Level Minimum Aberration Fractional Factorial Designs
    Day J.-D.
    Liu H.-L.
    Cheng T.-H.
    Han Y.-L.
    Tsai H.-T.
    Journal of Quality, 2023, 30 (02): : 67 - 88
  • [22] Author Correction: Two-level factorial experiments
    Byran Smucker
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 (5) : 446 - 446
  • [23] Two-level factorial designs with extreme numbers of level changes
    Cheng, CS
    Martin, RJ
    Tang, BX
    ANNALS OF STATISTICS, 1998, 26 (04): : 1522 - 1539
  • [24] Optimal two-stage designs for binary response experiments
    Sitter, RR
    Forbes, BE
    STATISTICA SINICA, 1997, 7 (04) : 941 - 955
  • [25] Partially replicated two-level fractional factorial designs
    Liao, CT
    Chai, FS
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2004, 32 (04): : 421 - 438
  • [26] An isomorphism check for two-level fractional factorial designs
    Lin, C. Devon
    Sitter, R. R.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (04) : 1085 - 1101
  • [27] Explaining power using two-level factorial designs
    Watts, DG
    JOURNAL OF QUALITY TECHNOLOGY, 1997, 29 (03) : 305 - 306
  • [28] CONFOUNDING STRUCTURE OF TWO-LEVEL NONREGULAR FACTORIAL DESIGNS
    Ren Junbai
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 488 - 498
  • [29] Robust two-level regular fractional factorial designs
    Chen, Chao
    Zhang, Run-Chu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (19) : 4794 - 4803
  • [30] Partial duplication in two-level fractional factorial designs
    Pen-Hwang Liau
    Statistical Papers, 2008, 49 : 353 - 361