Multicolour single-molecule tracking of mRNA interactions with RNP granules

被引:139
|
作者
Moon, Stephanie L. [1 ,2 ]
Morisaki, Tatsuya [3 ]
Khong, Anthony [1 ,2 ]
Lyon, Kenneth [3 ]
Parker, Roy [1 ,2 ]
Stasevich, Timothy J. [3 ,4 ]
机构
[1] Univ Colorado, Dept Biochem, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
[3] Colorado State Univ, Dept Biochem, Ft Collins, CO 80523 USA
[4] Tokyo Inst Technol, Inst Innovat Res, World Res Hub Initiat, Yokohama, Kanagawa, Japan
关键词
STRESS GRANULES; REAL-TIME; BODIES; CELL; PROTEINS;
D O I
10.1038/s41556-018-0263-4
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Ribonucleoprotein (RNP) granules are non-membrane-bound organelles that have critical roles in the stress response(1,2), maternal messenger RNA storage(3), synaptic plasticity(4), tumour progression(5,6) and neurodegeneration(7-9). However, the dynamics of their mRNA components within and near the granule surface remain poorly characterized, particularly in the context and timing of mRNAs exiting translation. Herein, we used multicolour single-molecule tracking to quantify the precise timing and kinetics of single mRNAs as they exit translation and enter RNP granules during stress. We observed single mRNAs interacting with stress granules and P-bodies, with mRNAs moving bidirectionally between them. Although translating mRNAs only interact with RNP granules dynamically, non-translating mRNAs can form stable, and sometimes rigid, associations with RNP granules with stability increasing with both mRNA length and granule size. Live and fixed cell imaging demonstrated that mRNAs can extend beyond the protein surface of a stress granule, which may facilitate interactions between RNP granules. Thus, the recruitment of mRNPs to RNP granules involves dynamic, stable and extended interactions affected by translation status, mRNA length and granule size that collectively regulate RNP granule dynamics.
引用
收藏
页码:162 / +
页数:9
相关论文
共 50 条
  • [11] Single-molecule and ensemble methods to probe RNP nucleation and condensate properties
    Rhine, Kevin
    Skanchy, Sophie
    Myong, Sua
    METHODS, 2022, 197 : 74 - 81
  • [12] Single-molecule insights into mRNA dynamics in neurons
    Buxbaum, Adina R.
    Yoon, Young J.
    Singer, Robert H.
    Park, Hye Yoon
    TRENDS IN CELL BIOLOGY, 2015, 25 (08) : 468 - 475
  • [13] Single-molecule mRNA and translation imaging in neurons
    Mitchell, Jessica
    Chao, Jeffrey A.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2021, 49 (05) : 2221 - 2227
  • [14] Single-Molecule Imaging of GPCR Interactions
    Calebiro, Davide
    Sungkaworn, Titiwat
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2018, 39 (02) : 109 - 122
  • [15] Single Molecule Analysis of Endogenous mRNA in Stress Granules
    Sugawara, Ko
    Okabe, Kohki
    Funatsu, Takashi
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 479A - 479A
  • [16] Plasmon-Molecule Interactions in Single-Molecule Junctions
    Zhang, Xiangui
    Li, Zhengyu
    Ji, Shurui
    Xu, Wei
    Chen, Lijue
    Xiao, Zongyuan
    Liu, Junyang
    Hong, Wenjing
    CHEMPLUSCHEM, 2024, 89 (05):
  • [17] Super-long single-molecule tracking
    Rita Strack
    Nature Methods, 2018, 15 : 408 - 408
  • [18] Single-Molecule Tracking of Polymer Surface Diffusion
    Skaug, Michael J.
    Mabry, Joshua N.
    Schwartz, Daniel K.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (04) : 1327 - 1332
  • [19] Single-molecule tracking of polymer surface diffusion
    20140617290006
    Schwartz, D.K. (daniel.schwartz@colorado.edu), 1600, American Chemical Society (136):
  • [20] Tracking topoisomerase activity at the single-molecule level
    Charvin, G
    Strick, TR
    Bensimon, D
    Croquette, V
    ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2005, 34 : 201 - 219