Bragg diffraction of spin waves from a two-dimensional antidot lattice

被引:69
|
作者
Zivieri, R. [1 ,2 ]
Tacchi, S. [3 ,4 ]
Montoncello, F. [1 ,2 ]
Giovannini, L. [1 ,2 ]
Nizzoli, F. [1 ,2 ]
Madami, M. [3 ,4 ]
Gubbiotti, G. [3 ,4 ,5 ]
Carlotti, G. [3 ,4 ]
Neusser, S. [6 ]
Duerr, G. [6 ]
Grundler, D. [6 ]
机构
[1] Univ Ferrara, Consorzio Nazl Interuniv Sci Fis Mat CNISM Unita, I-44122 Ferrara, Italy
[2] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy
[3] Univ Perugia, Consorzio Nazl Interuniv Sci Fis Mat CNISM Unita, I-06123 Perugia, Italy
[4] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[5] CNR IOM, Unita Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[6] Tech Univ Munich, Dept Phys, Lehrstuhl Phys Funktionaler Schichtsyst, D-85747 Garching, Germany
关键词
MODES;
D O I
10.1103/PhysRevB.85.012403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spin-wave band structure of a two-dimensional square array of NiFe circular antidots (hole diameter 120 nm, periodicity 800 nm) is investigated. Brillouin light scattering experiments and band structure calculations, carried out by means of the dynamical matrix method, provide evidence for either extended or localized magnonic modes. Both families exhibit band gaps at Brillouin zone boundaries, attributed to Bragg reflection. Their calculated magnitude agrees with the one obtained by using an analytical model that takes into account the periodic variation of the internal field. This is in contrast to antidots in photonics and electronics, where the back-reflection is directly caused by the presence of holes. The results are important for advancing research on nanostructured two-dimensional magnonic crystals.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Exterior diffraction problems for two-dimensional square lattice
    Kapanadze, David
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [22] Exterior diffraction problems for two-dimensional square lattice
    David Kapanadze
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [23] Formation of the two-dimensional image edge in two diffraction orders in the process of triple Bragg diffraction
    V. M. Kotov
    G. N. Shkerdin
    S. V. Averin
    Journal of Communications Technology and Electronics, 2016, 61 : 1275 - 1279
  • [24] Formation of the two-dimensional image edge in two diffraction orders in the process of triple Bragg diffraction
    Kotov, V. M.
    Shkerdin, G. N.
    Averin, S. V.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2016, 61 (11) : 1275 - 1279
  • [25] AlAs two-dimensional electrons in an antidot lattice: Electron pinball with elliptical Fermi contours
    Gunawan, O.
    De Poortere, E. P.
    Shayegan, M.
    PHYSICAL REVIEW B, 2007, 75 (08):
  • [26] Nonlinear compressional waves in a two-dimensional Yukawa lattice
    Avinash, K
    Zhu, P
    Nosenko, V
    Goree, J
    PHYSICAL REVIEW E, 2003, 68 (04):
  • [27] Two-dimensional image edge enhancement using two orders of Bragg diffraction
    Kotov, V. M.
    Averin, S. V.
    QUANTUM ELECTRONICS, 2020, 50 (03) : 305 - 308
  • [28] Two-dimensional image edge enhancement by two-phonon Bragg diffraction
    Kotov, V. M.
    Shkerdin, G. N.
    Bulyuk, A. N.
    QUANTUM ELECTRONICS, 2011, 41 (12) : 1109 - 1113
  • [29] Piecewise Parabolic Negative Magnetoresistance of Two-Dimensional Electron Gas with Triangular Antidot Lattice
    Budantsev, M. V.
    Lavrov, R. A.
    Pogosov, A. G.
    Zhdanov, E. Yu.
    Pokhabov, D. A.
    SEMICONDUCTORS, 2011, 45 (02) : 203 - 207
  • [30] Piecewise parabolic negative magnetoresistance of two-dimensional electron gas with triangular antidot lattice
    M. V. Budantsev
    R. A. Lavrov
    A. G. Pogosov
    E. Yu. Zhdanov
    D. A. Pokhabov
    Semiconductors, 2011, 45 : 203 - 207