Bragg diffraction of spin waves from a two-dimensional antidot lattice

被引:69
|
作者
Zivieri, R. [1 ,2 ]
Tacchi, S. [3 ,4 ]
Montoncello, F. [1 ,2 ]
Giovannini, L. [1 ,2 ]
Nizzoli, F. [1 ,2 ]
Madami, M. [3 ,4 ]
Gubbiotti, G. [3 ,4 ,5 ]
Carlotti, G. [3 ,4 ]
Neusser, S. [6 ]
Duerr, G. [6 ]
Grundler, D. [6 ]
机构
[1] Univ Ferrara, Consorzio Nazl Interuniv Sci Fis Mat CNISM Unita, I-44122 Ferrara, Italy
[2] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy
[3] Univ Perugia, Consorzio Nazl Interuniv Sci Fis Mat CNISM Unita, I-06123 Perugia, Italy
[4] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[5] CNR IOM, Unita Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[6] Tech Univ Munich, Dept Phys, Lehrstuhl Phys Funktionaler Schichtsyst, D-85747 Garching, Germany
关键词
MODES;
D O I
10.1103/PhysRevB.85.012403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spin-wave band structure of a two-dimensional square array of NiFe circular antidots (hole diameter 120 nm, periodicity 800 nm) is investigated. Brillouin light scattering experiments and band structure calculations, carried out by means of the dynamical matrix method, provide evidence for either extended or localized magnonic modes. Both families exhibit band gaps at Brillouin zone boundaries, attributed to Bragg reflection. Their calculated magnitude agrees with the one obtained by using an analytical model that takes into account the periodic variation of the internal field. This is in contrast to antidots in photonics and electronics, where the back-reflection is directly caused by the presence of holes. The results are important for advancing research on nanostructured two-dimensional magnonic crystals.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Thermopower of a two-dimensional antidot lattice
    Pogasov, AG
    Budantsev, MV
    Plotnikov, AE
    Bakarov, AK
    Toropov, AI
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, PTS I AND II, 2001, 87 : 781 - 782
  • [2] Diffraction problems for two-dimensional lattice waves in a quadrant
    Kapanadze, D.
    Pesetskaya, E.
    WAVE MOTION, 2021, 100
  • [3] Perpendicularly Magnetized Antidot Lattice as a Two-Dimensional Magnonic Metamaterial
    Malago, P.
    Giovannini, L.
    Zivieri, R.
    9TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2015), 2015, : 535 - 537
  • [4] DIFFRACTION ON THE TWO-DIMENSIONAL SQUARE LATTICE
    Bhat, H. S.
    Osting, B.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (05) : 1389 - 1406
  • [5] Electrostatic modulation of periodic potentials in a two-dimensional electron gas: from antidot lattice to quantum dot lattice
    Goswami, Srijit
    Aamir, Mohammed Ali
    Shamim, Saquib
    Siegert, Christoph
    Pepper, Michael
    Farrer, Ian
    Ritchie, David A.
    Ghosh, Arindam
    PHYSICS OF SEMICONDUCTORS, 2013, 1566 : 257 - +
  • [6] Diffraction of Light by a Two-Dimensional Lattice of Spheres
    de Dormale, Bernard
    Truong, Vo-Van
    INTERNATIONAL JOURNAL OF OPTICS, 2012, 2012
  • [7] Diffraction and transmission antiresonances of lattice waves in sparse two-dimensional arrays of defect atoms
    Kosevich, Yu. A.
    Darinskii, A. N.
    Strelnikov, I. A.
    JOURNAL OF SOUND AND VIBRATION, 2023, 553
  • [8] Two-dimensional waves in extended square lattice
    Porubov, A. V.
    Krivtsov, A. M.
    Osokina, A. E.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 99 : 281 - 287
  • [9] The interaction of nonlinear waves in two-dimensional lattice
    Yang Xiao-Xia
    Duan Wen-Shan
    Li Sheng-Chang
    Han Jiu-Ning
    CHINESE PHYSICS B, 2008, 17 (08) : 2989 - 2993
  • [10] The interaction of nonlinear waves in two-dimensional lattice
    杨晓霞
    段文山
    栗生长
    韩久宁
    Chinese Physics B, 2008, 17 (08) : 2989 - 2993