Soil organic carbon stocks and flows in New Zealand: System development, measurement and modelling

被引:48
|
作者
Tate, KR
Wilde, RH
Giltrap, DJ
Baisden, WT
Saggar, S
Trustrum, NA
Scott, NA
Barton, JR
机构
[1] Landcare Res, Palmerston North, New Zealand
[2] Inst Geol & Nucl Sci, Lower Hutt, New Zealand
[3] Queens Univ, Dept Geog, Kingston, ON K7L 3N6, Canada
[4] Climate Change Off, Minist Environm, Wellington, New Zealand
关键词
soil organic carbon; land-use change; stocks; flows; measurement; modelling; IPCC;
D O I
10.4141/S04-082
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
An IPCC-based Carbon Monitoring System (CMS) was developed to monitor soil organic C stocks and flows to assist New Zealand to achieve its CO2 emissions reduction target under the Kyoto Protocol. Geo-referenced soil C data from 1158 sites (0.3 in depth) were used to assign steady-state soil C stocks to various combinations of soil class, climate, and land use. Overall, CMS soil C stock estimates are consistent with detailed, stratified soil C measurements at specific sites and over larger regions. Soil C changes accompanying land-use changes were quantified using a national set of land-use effects (LUEs). These were derived using a General Linear Model to include the effects of numeric predictors (e.g., slope angle). Major uncertainties arise from estimates of changes in the areas involved, the assumption that soil C is at steady state for all land-cover types, and lack of soil C data for some LUEs. Total national soil organic C stocks estimated using the LUEs for 0-0.1, 0.1-0.3, and 0.3-1 in depths were 1300 +/- 20, 1590 +/- 30, and 1750 +/- 70 Tg, respectively. Most soil C is stored in grazing lands (1480 +/- 60 Tg to 0.3 in depth), which appear to be at or near steady state; their conversion to exotic forests and shrubland contributed most to the predicted national soil C loss of 0.6 +/- 0.2 Tg C yr(-1) during 1990-2000. Predicted and measured soil C changes for the grazing-forestry conversion agreed closely. Other uncertainties in our current soil CMS include: spatially integrated annual changes in soil C for the major land-use changes, lack of soil C change estimates below 0.3 in, C losses from erosion, the contribution of agricultural management of organic soils, and a possible interaction between land use and our soil-climate classification. Our approach could be adapted for use by other countries with land-use-change issues that differ from those in the IPCC default methodology.
引用
收藏
页码:481 / 489
页数:9
相关论文
共 50 条
  • [21] Development and calibration of a soil carbon inventory model for New Zealand
    McNeill, Stephen J. E.
    Golubiewski, Nancy
    Barringer, James
    SOIL RESEARCH, 2014, 52 (08) : 789 - 804
  • [22] Soil carbon stocks in wetlands of New Zealand and impact of land conversion since European settlement
    Ausseil, A. -G. E.
    Jamali, H.
    Clarkson, B. R.
    Golubiewski, N. E.
    WETLANDS ECOLOGY AND MANAGEMENT, 2015, 23 (05) : 947 - 961
  • [23] A preliminary assessment of the impact of landslide, earthflow, and gully erosion on soil carbon stocks in New Zealand
    Basher, Les
    Betts, Harley
    Lynn, Ian
    Marden, Mike
    McNeill, Stephen
    Page, Mike
    Rosser, Brenda
    GEOMORPHOLOGY, 2018, 307 : 93 - 106
  • [24] Soil carbon stocks in wetlands of New Zealand and impact of land conversion since European settlement
    A.-G. E. Ausseil
    H. Jamali
    B. R. Clarkson
    N. E. Golubiewski
    Wetlands Ecology and Management, 2015, 23 : 947 - 961
  • [25] Soil organic carbon stocks in saline and sodic landscapes
    Wong, Vanessa N. L.
    Murphy, Brian W.
    Koen, Terry B.
    Greene, Richard S. B.
    Dalal, Ram C.
    AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2008, 46 (04): : 378 - 389
  • [26] Soil organic carbon stocks of afforested peatlands in Ireland
    Wellock, Michael L.
    Reidy, Brian
    Laperle, Christina M.
    Bolger, Thomas
    Kiely, Gerard
    FORESTRY, 2011, 84 (04): : 441 - 451
  • [27] Spatial distribution of soil organic carbon stocks in France
    Martin, M. P.
    Wattenbach, M.
    Smith, P.
    Meersmans, J.
    Jolivet, C.
    Boulonne, L.
    Arrouays, D.
    BIOGEOSCIENCES, 2011, 8 (05) : 1053 - 1065
  • [28] Mapping soil organic carbon stocks in Tunisian topsoils
    Bahri, Haithem
    Raclot, Damien
    Barbouchi, Meriem
    Lagacherie, Philippe
    Annabi, Mohamed
    GEODERMA REGIONAL, 2022, 30
  • [29] Regional patterns of soil organic carbon stocks in China
    Yu, D. S.
    Shi, X. Z.
    Wang, Ht
    Sun, W. X.
    Chen, J. M.
    Liu, Q. H.
    Zhao, Y. C.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2007, 85 (03) : 680 - 689
  • [30] Influence of forest management on soil organic carbon stocks
    Labeda, Damian
    Kondras, Marek
    SOIL SCIENCE ANNUAL, 2020, 71 (02) : 165 - 173