Improved Prediction of Perimetric Loss in Glaucomatous Eyes Using Latent Class Mixed Modeling

被引:0
|
作者
Swaminathan, Swarup Sai [1 ]
Jammal, Alessandro A. [2 ]
Medeiros, Felipe [2 ]
机构
[1] Univ Miami Hlth Syst, Bascom Palmer Eye Inst, Miami, FL USA
[2] Duke Univ, Durham, NC USA
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
3098
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Improved reproducibility of retinal nerve fiber layer thickness measurements with the repeat-scan protocol using the Stratus OCT in normal and glaucomatous eyes
    Tzamalis, Argyrios
    Kynigopoulos, Myron
    Schlote, Torsten
    Haefliger, Ivan
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2009, 247 (02) : 245 - 252
  • [42] Using Latent Class Mixed Modelling to Profile Parkinson's Disease Patients at Risk of Cognitive Decline
    Pourzinal, D.
    Lawson, R.
    Yarnall, A.
    Burn, D.
    Williams-Gray, C.
    Barker, R.
    Yang, J.
    McMahon, K.
    O'Sullivan, J.
    Byrne, G.
    Dissanayaka, N.
    MOVEMENT DISORDERS, 2023, 38 : S164 - S164
  • [43] Longitudinal analysis of activity and travel pattern dynamics using generalized mixed Markov latent class models
    Goulias, KG
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1999, 33 (08) : 535 - 557
  • [44] Mixed Rasch modeling of the self-rating depression scale - Incorporating latent class and Rasch rating scale models
    Hong, Sehee
    Min, Sae-Young
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2007, 67 (02) : 280 - 299
  • [45] Improved reproducibility of retinal nerve fiber layer thickness measurements with the repeat-scan protocol using the Stratus OCT in normal and glaucomatous eyes
    Argyrios Tzamalis
    Myron Kynigopoulos
    Torsten Schlote
    Ivan Haefliger
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247 : 245 - 252
  • [46] Geostatistical Modeling and Prediction Using Mixed-Precision Tile Cholesky Factorization
    Abdulah, Sameh
    Ltaief, Hatem
    Sun, Ying
    Genton, Marc G.
    Keyes, David E.
    2019 IEEE 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS (HIPC), 2019, : 152 - 162
  • [47] Analysis and modeling conditional mutual dependency of metrics in software defect prediction using latent variables
    Harzevili, Nima Shiri
    Alizadeh, Sasan H.
    NEUROCOMPUTING, 2021, 460 : 309 - 330
  • [48] Studying the Strength of Prediction Using Indirect Mixture Modeling: Nonlinear Latent Regression with Heteroskedastic Residuals
    de Kort, Johanna M.
    Dolan, Conor V.
    Lubke, Gitta H.
    Molenaar, Dylan
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2017, 24 (02) : 301 - 313
  • [49] Improved Protein Structural Class Prediction Using Genetic Algorithm and Artificial Immune System
    Sahu, Sitanshu Sekhar
    Panda, Ganapati
    Nanda, Satyasai Jagannath
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 730 - 734
  • [50] Customer churn prediction using improved one-class support vector machine
    Zhao, Y
    Li, B
    Li, X
    Liu, WH
    Ren, SJ
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2005, 3584 : 300 - 306