The global Gevrey regularity of the rotation two-component Camassa-Holm system

被引:0
|
作者
Guo, Yingying [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
The rotation two-component; Camassa-Holm system; Global Gevrcy regularity; Gevrey class; BOUNDARY VALUE-PROBLEMS; BLOW-UP PHENOMENA; SHALLOW-WATER EQUATION; WELL-POSEDNESS; CONSERVATIVE SOLUTIONS; WEAK SOLUTIONS; WAVE-BREAKING; EXISTENCE; ANALYTICITY; STABILITY;
D O I
10.1016/j.jmaa.2020.123933
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the rotation two-component Camassa-Holm system, which is a model in the equatorial water waves with the effect of the Coriolis force. We establish the global Gevrey regularity of the rotation two-component Camassa-Holm system in Gevrey class G(tau) with (tau )>= 1 in time. Our obtained result improves considerably the recent result in [45]. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Rotation number and eigenvalues of two-component modified Camassa-Holm equations
    Jiang, Ke
    Meng, Gang
    Zhang, Zhi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 78
  • [22] INITIAL DATA PROBLEMS FOR THE TWO-COMPONENT CAMASSA-HOLM SYSTEM
    Wang, Xiaohuan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [23] Wave breaking for a modified two-component Camassa-Holm system
    Guo, Zhengguang
    Zhu, Mingxuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) : 2759 - 2770
  • [24] Lipschitz metric for the modified two-component Camassa-Holm system
    Guan, Chunxia
    Yan, Kai
    Wei, Xuemei
    ANALYSIS AND APPLICATIONS, 2018, 16 (02) : 159 - 182
  • [25] Two-component generalizations of the Camassa-Holm equation
    Kuz'min, P. A.
    MATHEMATICAL NOTES, 2007, 81 (1-2) : 130 - 134
  • [26] Wave Breaking for the Modified Two-Component Camassa-Holm System
    Lv, Wujun
    Zhu, Weiyi
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [27] Dissipative solutions for the modified two-component Camassa-Holm system
    Wang, Yujuan
    Song, Yongduan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (03): : 339 - 360
  • [28] Two-component generalizations of the Camassa-Holm equation
    Hone, Andrew N. W.
    Novikov, Vladimir
    Wang, Jing Ping
    NONLINEARITY, 2017, 30 (02) : 622 - 658
  • [29] On an integrable two-component Camassa-Holm shallow water system
    Constantin, Adrian
    Ivanov, Rossen I.
    PHYSICS LETTERS A, 2008, 372 (48) : 7129 - 7132
  • [30] Two-component generalizations of the Camassa-Holm equation
    P. A. Kuz’min
    Mathematical Notes, 2007, 81 : 130 - 134