Turing models in the biological pattern formation through spectral meshless radial point interpolation approach

被引:5
|
作者
Shivanian, Elyas [1 ]
Jafarabadi, Ahmad [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Appl Math, Qazvin 3414916818, Iran
关键词
Turing systems; Schnakenberg model; Spectral meshless radial point interpolation (SMRPI) method; Radial basis function; Finite difference method; REACTION-DIFFUSION SYSTEMS; STIRRED TANK REACTOR; NUMERICAL-SOLUTION; AUTOCATALYTIC REACTIONS; FINITE-VOLUME; EQUATION; SCHEME; ERROR;
D O I
10.1007/s00366-018-00698-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the present paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the solution of pattern formation in nonlinear reaction diffusion systems. Firstly, we obtain a time discrete scheme by approximating the time derivative via a finite difference formula, then we use the SMRPI approach to approximate the spatial derivatives. This method is based on a combination of meshless methods and spectral collocation techniques. The point interpolation method with the help of radial basis functions is used to construct shape functions which act as basis functions in the frame of SMRPI. In the current work, to eliminate the nonlinearity, a simple predictor-corrector (P-C) scheme is performed. The effect of parameters and conditions are studied by considering the well-known Schnakenberg model.
引用
收藏
页码:271 / 282
页数:12
相关论文
共 50 条
  • [21] Numerical Dispersion Analysis of Radial Point Interpolation Meshless Method
    Zhang, Xiaoyan
    Ye, Peng
    Chen, Zhizhang
    Yu, Yiqiang
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 717 - 719
  • [22] Elastoplastic Analysis of Plates with Radial Point Interpolation Meshless Methods
    Belinha, Jorge
    Aires, Miguel
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [23] Extending a radial point interpolation meshless method to non-local constitutive damage models
    Farahani, Behzad V.
    Belinha, J.
    Andrade Pires, F. M.
    Ferreira, Antonio J. M.
    Moreira, P. M. G. P.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2016, 85 : 84 - 98
  • [25] Numerical simulation of nonlinear coupled Burgers' equation through meshless radial point interpolation method
    Jafarabadi, Ahmad
    Shivanian, Elyas
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 95 : 187 - 199
  • [26] Elasto-plastic adhesive joint design approach by a radial point interpolation meshless method
    Resende, R.F.P.
    Resende, B.F.P.
    Sanchez Arce, I.J.
    Ramalho, L.D.C.
    Campilho, R.D.S.G.
    Belinha, J.
    Journal of Adhesion, 2022, 98 (15): : 2396 - 2422
  • [27] An inverse problem of identifying the control function in two and three-dimensional parabolic equations through the spectral meshless radial point interpolation
    Shivanian, Elyas
    Jafarabadi, Ahmad
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 : 82 - 101
  • [28] Elasto-plastic adhesive joint design approach by a radial point interpolation meshless method
    Resende, R. F. P.
    Resende, B. F. P.
    Arce, I. J. Sanchez
    Ramalho, L. D. C.
    Campilho, R. D. S. G.
    Belinha, J.
    JOURNAL OF ADHESION, 2022, 98 (15): : 2396 - 2422
  • [29] The local radial point interpolation meshless method for solving Maxwell equations
    Dehghan, Mehdi
    Haghjoo-Saniji, Mina
    ENGINEERING WITH COMPUTERS, 2017, 33 (04) : 897 - 918
  • [30] The Meshless Radial Point Interpolation Method for Time-Domain Electromagnetics
    Kaufmann, Thomas
    Fumeaux, Christophe
    Vahldieck, Ruediger
    2008 IEEE MTT-S International Microwave Symposium Digest, Vols 1-4, 2008, : 61 - 64