On totally smooth subspaces of Banach spaces: the Vlasov theorem revisited

被引:1
|
作者
Oja, Eve [1 ,2 ]
Poldvere, Mart [1 ]
Viil, Tauri [1 ]
机构
[1] Univ Tartu, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, Estonia
[2] Estonian Acad Sci, Kohtu 6, EE-10130 Tallinn, Estonia
关键词
Phelps' property U; nested sequence of balls; totally smooth subspace; NESTED SEQUENCES; BALLS; EXTENSIONS; UNIQUENESS; PROPERTY;
D O I
10.4064/sm8623-12-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Banach space and let Y be a closed subspace of X. We establish new geometric characterizations for Y to be totally smooth in X, meaning that every closed subspace of Y has Phelps' property U in X. In particular, this gives a new self-contained proof for a recent theorem of Liao and Wong, and an improved proof for a theorem of Vlasov.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 50 条
  • [21] ε-WEAKLY CHEBYSHEV SUBSPACES OF BANACH SPACES
    Sh.Rezapour
    Analysis in Theory and Applications, 2003, (02) : 130 - 135
  • [22] LP SUBSPACES OF BANACH-SPACES
    MAUREY, B
    ASTERISQUE, 1983, (105-) : 199 - 215
  • [23] ON FINITE DIMENSIONAL SUBSPACES OF BANACH SPACES
    LAZAR, A
    ZIPPIN, M
    ISRAEL JOURNAL OF MATHEMATICS, 1965, 3 (03) : 147 - &
  • [24] SUBSPACES OF BANACH SPACES WITH BIG SLICES
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (04): : 771 - 782
  • [25] Orthogonally complemented subspaces in Banach spaces
    Hudzik, Henryk
    Wang, Yuwen
    Sha, Ruli
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (7-8) : 779 - 790
  • [26] Complemented subspaces of products of Banach spaces
    Chigogidze, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (10) : 2959 - 2963
  • [27] BALL REMOTAL SUBSPACES OF BANACH SPACES
    Bandyopadhyay, Pradipta
    Lin, Bor-Luh
    Rao, T. S. S. R. K.
    COLLOQUIUM MATHEMATICUM, 2009, 114 (01) : 119 - 133
  • [28] Approximate Carathéodory’s Theorem in Uniformly Smooth Banach Spaces
    Grigory Ivanov
    Discrete & Computational Geometry, 2021, 66 : 273 - 280
  • [29] Orthogonally complemented subspaces in Banach spaces
    Hudzik, Henryk
    Wang, Yuwen
    Sha, Ruli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E1701 - E1711
  • [30] On Weak*-Extensible Subspaces of Banach Spaces
    Martinez-Cervantes, G.
    Rodriguez, J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (02)