On totally smooth subspaces of Banach spaces: the Vlasov theorem revisited

被引:1
|
作者
Oja, Eve [1 ,2 ]
Poldvere, Mart [1 ]
Viil, Tauri [1 ]
机构
[1] Univ Tartu, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, Estonia
[2] Estonian Acad Sci, Kohtu 6, EE-10130 Tallinn, Estonia
关键词
Phelps' property U; nested sequence of balls; totally smooth subspace; NESTED SEQUENCES; BALLS; EXTENSIONS; UNIQUENESS; PROPERTY;
D O I
10.4064/sm8623-12-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Banach space and let Y be a closed subspace of X. We establish new geometric characterizations for Y to be totally smooth in X, meaning that every closed subspace of Y has Phelps' property U in X. In particular, this gives a new self-contained proof for a recent theorem of Liao and Wong, and an improved proof for a theorem of Vlasov.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 50 条
  • [1] Smooth norms in dense subspaces of Banach spaces
    Dantas, Sheldon
    Hajek, Petr
    Russo, Tommaso
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (01)
  • [2] Cramer's Theorem in Banach Spaces Revisited
    Petit, Pierre
    SEMINAIRE DE PROBABILITES XLIX, 2018, 2215 : 455 - 473
  • [3] On ω-Chebyshev subspaces in Banach spaces
    Shams, Maram
    Mazaheri, Hamid
    Vaezpour, Sayed Mansour
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (03) : 601 - 606
  • [4] Decomposable subspaces of Banach spaces
    González, M
    Martinón, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (3-4): : 319 - 328
  • [5] FRAMES OF SUBSPACES FOR BANACH SPACES
    Jain, P. K.
    Kaushik, S. K.
    Kumar, Varinder
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2010, 8 (02) : 243 - 252
  • [6] Central subspaces of Banach spaces
    Bandyopadhyay, P
    Rao, TSSRK
    JOURNAL OF APPROXIMATION THEORY, 2000, 103 (02) : 206 - 222
  • [7] Recurrent Subspaces in Banach Spaces
    Lopez-Martinez, Antoni
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (11) : 9067 - 9087
  • [8] NORMING SUBSPACES OF BANACH SPACES
    Fonf, V. P.
    Lajara, S.
    Troyanski, S.
    Zanco, C.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (07) : 3039 - 3045
  • [9] Approximate Caratheodory's Theorem in Uniformly Smooth Banach Spaces
    Ivanov, Grigory
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 273 - 280
  • [10] The sum theorem for maximal monotone operators in reflexive Banach spaces revisited
    Voisei, Mircea D.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (01): : 123 - 126