A Priori Error Analysis of a Discontinuous Galerkin Scheme for the Magnetic Induction Equation

被引:2
|
作者
Sarkar, Tanmay [1 ,2 ]
机构
[1] Tata Inst Fundamental Res, Ctr Applicable Math, Post Bag 6503,GKVK PO, Bangalore 560065, Karnataka, India
[2] Indian Inst Technol Jammu, Dept Math, NH 44 Bypass Rd, Jammu 181221, Jammu & Kashmir, India
关键词
Discontinuous Galerkin Methods; Magnetic Induction; Explicit Runge-Kutta Method; Error Analysis; Rate of Convergence; RUNGE-KUTTA SCHEMES; STABILIZATION; STABILITY;
D O I
10.1515/cmam-2018-0032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We perform the error analysis of a stabilized discontinuous Galerkin scheme for the initial boundary value problem associated with the magnetic induction equations using standard discontinuous Lagrange basis functions. In order to obtain the quasi-optimal convergence incorporating second- order Runge-Kutta schemes for time discretization, we need a strengthened 4/3-CFL condition (Delta t similar to h(4/3)). To overcome this unusual restriction on the CFL condition, we consider the explicit third-order Runge-Kutta scheme for time discretization. We demonstrate the error estimates in L-2-sense and obtain quasi-optimal convergence for smooth solution in space and time for piecewise polynomials with any degree l >= 1 under the standard CFL condition.
引用
收藏
页码:121 / 140
页数:20
相关论文
共 50 条
  • [31] A hp- Discontinuous Galerkin Method for the Time-Dependent Maxwell's Equation: a priori Error Estimate
    Daveau, C.
    Zaghdani, A.
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 756 - 761
  • [32] A priori and a posteriori error analysis for the mixed discontinuous Galerkin finite element approximations of the biharmonic problems
    Xiong, Chunguang
    Becker, Roland
    Luo, Fusheng
    Ma, Xiuling
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 318 - 353
  • [33] A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems
    Kretzschmar, Fritz
    Moiola, Andrea
    Perugia, Ilaria
    Schnepp, Sascha M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1599 - 1635
  • [34] Error analysis for discontinuous Galerkin method for time-fractional Burgers' equation
    Maji, Sandip
    Natesan, Srinivasan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 9703 - 9717
  • [35] Analysis of an a posteriori error estimator for the transport equation with SN and discontinuous Galerkin discretizations
    Fournier, D.
    Le Tellier, R.
    Suteau, C.
    ANNALS OF NUCLEAR ENERGY, 2011, 38 (2-3) : 221 - 231
  • [36] A priori error estimates of discontinuous Galerkin methods for a quasi-variational inequality
    Wang, Fei
    Shah, Sheheryar
    Xiao, Wenqiang
    BIT NUMERICAL MATHEMATICS, 2021, 61 (03) : 1005 - 1022
  • [37] A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods
    Lin, Tao
    Yang, Qing
    Zhang, Xu
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 875 - 894
  • [38] A priori error estimate for the Baumann-Oden version of the discontinuous Galerkin method
    Prudhomme, S
    Pascal, F
    Oden, JT
    Romkes, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (09): : 851 - 856
  • [39] A priori error estimates of discontinuous Galerkin methods for a quasi-variational inequality
    Fei Wang
    Sheheryar Shah
    Wenqiang Xiao
    BIT Numerical Mathematics, 2021, 61 : 1005 - 1022
  • [40] A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods
    Tao Lin
    Qing Yang
    Xu Zhang
    Journal of Scientific Computing, 2015, 65 : 875 - 894