When and how self-cleaning of superhydrophobic surfaces works

被引:311
|
作者
Geyer, Florian [1 ]
D'Acunzi, Maria [1 ]
Sharifi-Aghili, Azadeh [1 ]
Saal, Alexander [1 ]
Gao, Nan [1 ,2 ,4 ]
Kaltbeitzel, Anke [1 ]
Sloot, Tim-Frederik [3 ]
Berger, Ruediger [1 ]
Butt, Hans-Juergen [1 ]
Vollmer, Doris [1 ]
机构
[1] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[2] Univ South Australia, Future Ind Inst, Mawson Lake Campus, Mawson Lakes, SA 5095, Australia
[3] Evonik Resource Efficiency GmbH, Goldschmidtstr 100, D-45127 Essen, Germany
[4] Univ Birmingham, Dept Mech Engn, Birmingham B15 2TT, W Midlands, England
来源
SCIENCE ADVANCES | 2020年 / 6卷 / 03期
基金
欧洲研究理事会;
关键词
SPHERE TENSIOMETRY; SILICA SPHERES; PARTICLE; CONTACT; MEMBRANES; ENERGY; FLOW;
D O I
10.1126/sciadv.aaw9727
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the enormous interest in superhydrophobicity for self-cleaning, a clear picture of contaminant removal is missing, in particular, on a single-particle level. Here, we monitor the removal of individual contaminant particles on the micrometer scale by confocal microscopy. We correlate this space- and time-resolved information with measurements of the friction force. The balance of capillary and adhesion force between the drop and the contamination on the substrate determines the friction force of drops during self-cleaning. These friction forces are in the range of micro-Newtons. We show that hydrophilic and hydrophobic particles hardly influence superhydrophobicity provided that the particle size exceeds the pore size or the thickness of the contamination falls below the height of the protrusions. These detailed insights into self-cleaning allow the rational design of superhydrophobic surfaces that resist contamination as demonstrated by outdoor environmental (>200 days) and industrial standardized contamination experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Advancements in self-cleaning building materials: Photocatalysts, superhydrophobic surfaces, and biocides approaches
    Prudente, Isis Nayra Rolemberg
    Santos, Hericles Campos dos
    Fonseca, Jander Lopes
    Barreto, Ledjane Silva
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 434
  • [22] Fabrication of superhydrophobic surfaces with hierarchical structure and their corrosion resistance and self-cleaning properties
    Zhu, Benfeng
    Ou, Rujie
    Liu, Jiao
    Yang, Yumeng
    Chen, Si'an
    Wei, Guoying
    Zhang, Zhao
    SURFACES AND INTERFACES, 2022, 28
  • [23] Superhydrophobic and Self-cleaning Macrosize Surfaces of Silicone Rubber and Its Mechanical Flexibility
    Harada S.
    Arie T.
    Akita S.
    Takei K.
    Takei, K. (takei@pe.osakafu-u.ac.jp), 1600, Springer Science and Business Media, LLC (04): : 301 - 305
  • [24] SUPERHYDROPHOBIC SURFACES FOR WATER-REPELLENT OR SELF-CLEANING BEHAVIOR: CHEMICAL EFFECT
    Zhou, Y. P.
    Lin, Z. W.
    Brown, J.
    SURFACE REVIEW AND LETTERS, 2009, 16 (05) : 645 - 652
  • [25] Self-cleaning surfaces in sponges
    Christine Hanna Lydia Schönberg
    Marine Biodiversity, 2015, 45 : 623 - 624
  • [26] Self-cleaning conducting polymer surfaces: Reversible superhydrophobic-to-superhydrophillic surfaces with electrochromic properties
    Advincula, Rigoberto
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [27] Advanced Self-Cleaning Surfaces
    Antonini, Carlo
    D'Arienzo, Massimiliano
    Ferrari, Michele
    Diamanti, Maria Vittoria
    MATERIALS, 2024, 17 (03)
  • [28] Self-cleaning surfaces in sponges
    Schoenberg, Christine Hanna Lydia
    MARINE BIODIVERSITY, 2015, 45 (04) : 623 - 624
  • [29] Smart self-cleaning surfaces
    Gotzmann, Gaby
    Vogel, Uwe
    Glöß, Daniel
    Wartenberg, Philipp
    König, Ulla
    JOT, Journal fuer Oberflaechentechnik, 2020, 60 (04): : 54 - 57
  • [30] Self-cleaning superhydrophobic fly ash geopolymer
    Chindaprasirt, Prinya
    Jitsangiam, Peerapong
    Pachana, Pumipat K.
    Rattanasak, Ubolluk
    SCIENTIFIC REPORTS, 2023, 13 (01)