Grammatical Evolution for the Multi-Objective Integration and Test Order Problem

被引:34
|
作者
Mariani, Thaina [1 ]
Guizzo, Giovani [1 ]
Vergilio, Silvia R. [1 ]
Pozo, Aurora T. R. [1 ]
机构
[1] Univ Fed Parana, Dept Comp Sci, Curitiba, Parana, Brazil
关键词
search based software engineering; multi-objective; grammatical evolution; hyper-heuristic; evolutionary algorithm; GENERATION; HEURISTICS; ALGORITHM;
D O I
10.1145/2908812.2908816
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Search techniques have been successfully applied for solving different software testing problems. However, choosing, implementing and configuring a search technique can be hard tasks. To reduce efforts spent in such tasks, this paper presents an offine hyper-heuristic named GEMOITO, based on Grammatical Evolution (GE). The goal is to automatically generate a Multi-Objective Evolutionary Algorithm (MOEA) to solve the Integration and Test Order (ITO) problem. The MOEAs are distinguished by components and parameters values, described by a grammar. The proposed hyper-heuristic is compared to conventional MOEAs and to a selection hyper-heuristic used in related work. Results show that GEMOITO can generate MOEAs that are statistically better or equivalent to the compared algorithms.
引用
收藏
页码:1069 / 1076
页数:8
相关论文
共 50 条
  • [11] A hybrid automated trading system based on multi-objective grammatical evolution
    Contreras, Ivan
    Ignacio Hidalgo, J.
    Nunez-Letamendia, Laura
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (03) : 2461 - 2475
  • [12] A Multi-Objective Grammatical Evolution Framework to Generate Convolutional Neural Network Architectures
    da Silva, Cleber A. C. F.
    Rosa, Daniel Carneiro
    Miranda, Pericles B. C.
    Cordeiro, Filipe R.
    Si, Tapas
    Nascimento, Andre C. A.
    Mello, Rafael F. L.
    de Mattos Neto, Paulo S. G.
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 2187 - 2194
  • [13] Multi-objective evolution strategy for multimodal multi-objective optimization
    Zhang, Kai
    Chen, Minshi
    Xu, Xin
    Yen, Gary G.
    APPLIED SOFT COMPUTING, 2021, 101
  • [14] Short and Medium Term Blood Glucose Prediction Using Multi-objective Grammatical Evolution
    Contador, Sergio
    Manuel Colmenar, J.
    Garnica, Oscar
    Ignacio Hidalgo, J.
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2020, 2020, 12104 : 494 - 509
  • [15] A benchmark test problem toolkit for multi-objective path optimization
    Hu, Xiao-Bing
    Zhang, Hai-Lin
    Zhang, Chi
    Zhang, Ming-Kong
    Li, Hang
    Leeson, Mark S.
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 18 - 30
  • [16] Evolutionary algorithms for the multi-objective test data generation problem
    Ferrer, Javier
    Chicano, Francisco
    Alba, Enrique
    SOFTWARE-PRACTICE & EXPERIENCE, 2012, 42 (11): : 1331 - 1362
  • [17] Multi-objective Grammatical Evolution of Decision Trees for Mobile Marketing user conversion prediction
    Pereira, Pedro Jose
    Cortez, Paulo
    Mendes, Rui
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168
  • [18] MULTI-OBJECTIVE TEST SUITE MINIMISATION USING QUANTUM-INSPIRED MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION ALGORITHM
    Kumari, A. Charan
    Srinivas, K.
    Gupta, M. P.
    2012 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2012, : 377 - 383
  • [19] Modeling Framework API Evolution as a Multi-Objective Optimization Problem
    Wu, Wei
    2011 IEEE 19TH INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC), 2011, : 262 - 265
  • [20] A Multi-Objective Differential Evolution Approach for the Question Selection Problem
    Paul, Dimple V.
    Pawar, Jyoti D.
    2014 FIFTH INTERNATIONAL CONFERENCE ON THE APPLICATIONS OF DIGITAL INFORMATION AND WEB TECHNOLOGIES (ICADIWT), 2014, : 219 - 225