Grammatical Evolution for the Multi-Objective Integration and Test Order Problem

被引:34
|
作者
Mariani, Thaina [1 ]
Guizzo, Giovani [1 ]
Vergilio, Silvia R. [1 ]
Pozo, Aurora T. R. [1 ]
机构
[1] Univ Fed Parana, Dept Comp Sci, Curitiba, Parana, Brazil
关键词
search based software engineering; multi-objective; grammatical evolution; hyper-heuristic; evolutionary algorithm; GENERATION; HEURISTICS; ALGORITHM;
D O I
10.1145/2908812.2908816
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Search techniques have been successfully applied for solving different software testing problems. However, choosing, implementing and configuring a search technique can be hard tasks. To reduce efforts spent in such tasks, this paper presents an offine hyper-heuristic named GEMOITO, based on Grammatical Evolution (GE). The goal is to automatically generate a Multi-Objective Evolutionary Algorithm (MOEA) to solve the Integration and Test Order (ITO) problem. The MOEAs are distinguished by components and parameters values, described by a grammar. The proposed hyper-heuristic is compared to conventional MOEAs and to a selection hyper-heuristic used in related work. Results show that GEMOITO can generate MOEAs that are statistically better or equivalent to the compared algorithms.
引用
收藏
页码:1069 / 1076
页数:8
相关论文
共 50 条
  • [1] A multi-objective optimization approach for the integration and test order problem
    Guez Assuncao, Wesley Klewerton
    Colanzi, Thelma Elita
    Vergilio, Silvia Regina
    Pozo, Aurora
    INFORMATION SCIENCES, 2014, 267 : 119 - 139
  • [2] A Hyper-Heuristic for the Multi-Objective Integration and Test Order Problem
    Guizzo, Giovani
    Fritsche, Gian M.
    Vergilio, Silvia R.
    Pozo, Aurora T. R.
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 1343 - 1350
  • [3] Evaluating a Multi-Objective Hyper-Heuristic for the Integration and Test Order Problem
    Guizzo, Giovani
    Vergilio, Silvia R.
    Pozo, Aurora T. R.
    2015 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2015), 2015, : 1 - 6
  • [4] Multi-objective optimization algorithms applied to the class integration and test order problem
    Vergilio S.R.
    Pozo A.
    Árias J.C.G.
    da Veiga Cabral R.
    Nobre T.
    International Journal on Software Tools for Technology Transfer, 2012, 14 (4) : 461 - 475
  • [5] A multi-objective and evolutionary hyper-heuristic applied to the Integration and Test Order Problem
    Guizzo, Giovanni
    Vergilio, Silvia R.
    Pozo, Aurora T. R.
    Fritsche, Gian M.
    APPLIED SOFT COMPUTING, 2017, 56 : 331 - 344
  • [6] Tuning Multi-Objective Optimization Algorithms for the Integration and Testing Order Problem
    Ravber, Miha
    Crepinsek, Matej
    Mernik, Marjan
    Kosar, Tomaz
    BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS, BIOMA 2018, 2018, 10835 : 234 - 245
  • [7] Automated CNN optimization using multi-objective grammatical evolution
    da Silva, Cleber A. C. F.
    Rosa, Daniel Carneiro
    Miranda, Pericles B. C.
    Si, Tapas
    Cerri, Ricardo
    Basgalupp, Marcio P.
    APPLIED SOFT COMPUTING, 2024, 151
  • [8] Improving multi-objective evolutionary algorithms using Grammatical Evolution
    Rodriguez, Amin V. Bernabe
    Alejo-Cerezo, Braulio I.
    Coello, Carlos A. Coello
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 84
  • [9] A scalable multi-objective test problem toolkit
    Huband, S
    Barone, L
    While, L
    Hingston, P
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 280 - 295
  • [10] Multi-Objective Optimization of Dynamic Memory Managers using Grammatical Evolution
    Manuel Colmenar, J.
    Risco-Martin, Jose L.
    Atienza, David
    Hidalgo, J. Ignacio
    Felipe, C. E. S., II
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1819 - 1826