ON INFINITE MACWILLIAMS RINGS AND MINIMAL INJECTIVITY CONDITIONS

被引:1
|
作者
Iovanov, Miodrag Cristian [1 ,2 ]
机构
[1] Univ Iowa, Dept Math, McLean Hall, Iowa City, IA 52245 USA
[2] Univ Bucharest, Fac Math, Str Acad 14, RO-010014 Bucharest, Romania
关键词
FROBENIUSEAN ALGEBRAS; EQUIVALENCE; INVARIANT; MODULES; AUTOMORPHISMS; CODES;
D O I
10.1090/proc/15929
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a complete answer to the problem of characterizing left Artinian rings which satisfy the (left or right) MacWilliams extension theorem for linear codes, generalizing results of Iovanov [J. Pure Appl. Algebra 220 (2016), pp. 560-576] and Schneider and Zumbr<spacing diaeresis>agel [Proc. Amer. Math. Soc. 147 (2019), pp. 947-961] and answering the question of Schneider and Zumbragel [Proc. Amer. Math. Soc. 147 (2019), pp. 947-961]. We show that they are quasi-Frobenius rings, and are precisely the rings which are a product of a finite Frobenius ring and an infinite quasi-Frobenius ring with no non-trivial finite modules (quotients). For this, we give a more general "minimal test for injectivity" for a left Artinian ring A: we show that if every injective morphism Sigma(k) -> A from the k'th socle of A extends to a morphism A -> A, then the ring is quasi-Frobenius. We also give a general result under which if injective maps N -> M from submodules N of a module M extend to endomorphisms of M (pseudo-injectivity), then all such morphisms N -> M extend (quasi-injectivity) and obtain further applications.
引用
收藏
页码:4575 / 4586
页数:12
相关论文
共 50 条
  • [21] On rings with one middle class of injectivity domains
    Alizade, Rafail
    Demirci, Yilmaz Mehmet
    Turkmen, Burcu Nisanci
    Turkmen, Ergul
    MATHEMATICAL COMMUNICATIONS, 2022, 27 (01) : 109 - 126
  • [22] On Artinian rings with restricted class of injectivity domains
    Aydogdu, Pinar
    Sarac, Buelent
    JOURNAL OF ALGEBRA, 2013, 377 : 49 - 65
  • [23] Rings with modules having a restricted injectivity domain
    Demirci, Yilmaz Mehmet
    Turkmen, Burcu Nisanci
    Turkmen, Ergul
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 312 - 326
  • [24] Gorenstein flatness and injectivity over Gorenstein rings
    WeiLing Song
    ZhaoYong Huang
    Science in China Series A: Mathematics, 2008, 51 : 215 - 218
  • [25] Gorenstein flatness and injectivity over Gorenstein rings
    SONG WeiLing HUANG ZhaoYong~+ Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2008, (02) : 215 - 218
  • [26] Gorenstein flatness and injectivity over Gorenstein rings
    Song WeiLing
    Huang ZhaoYong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (02): : 215 - 218
  • [27] Tests for injectivity of modules over commutative rings
    Lars Winther Christensen
    Srikanth B. Iyengar
    Collectanea Mathematica, 2017, 68 : 243 - 250
  • [28] On rings close to regular and p-injectivity
    Ming, Roger Yue Chi
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (02): : 203 - 212
  • [29] Tests for injectivity of modules over commutative rings
    Christensen, Lars Winther
    Iyengar, Srikanth B.
    COLLECTANEA MATHEMATICA, 2017, 68 (02) : 243 - 250
  • [30] Rings with modules having a restricted injectivity domain
    Yılmaz Mehmet Demirci
    Burcu Nişancı Türkmen
    Ergül Türkmen
    São Paulo Journal of Mathematical Sciences, 2020, 14 : 312 - 326