A note on graphs whose signless Laplacian has three distinct eigenvalues

被引:14
|
作者
Ayoobi, F. [1 ]
Omidi, G. R. [1 ,2 ]
Tayfeh-Rezaie, B. [2 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
来源
LINEAR & MULTILINEAR ALGEBRA | 2011年 / 59卷 / 06期
关键词
signless Laplacian matrix; eigenvalues; join of graphs; REGULAR GRAPHS;
D O I
10.1080/03081087.2010.489900
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate graphs whose signless Laplacian matrix has three distinct eigenvalues. We show that the largest signless Laplacian eigenvalue of a connected graph G with three distinct signless Laplacian eigenvalues is noninteger if and only if G = K-n - e for n >= 4, where K-n - e is the n vertex complete graph with an edge removed. Moreover, examples of such graphs are given in this article.
引用
收藏
页码:701 / 706
页数:6
相关论文
共 50 条
  • [21] On graphs whose smallest distance (signless Laplacian) eigenvalue has large multiplicity
    Lu, Lu
    Huang, Qiongxiang
    Huang, Xueyi
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (11): : 2218 - 2231
  • [22] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Xiaodan Chen
    Guoliang Hao
    Dequan Jin
    Jingjian Li
    Czechoslovak Mathematical Journal, 2018, 68 : 601 - 610
  • [23] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Chen, Xiaodan
    Hao, Guoliang
    Jin, Dequan
    Li, Jingjian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (03) : 601 - 610
  • [24] On Graphs with Three or Four Distinct Normalized Laplacian Eigenvalues
    Huang, Xueyi
    Huang, Qiongxiang
    ALGEBRA COLLOQUIUM, 2019, 26 (01) : 65 - 82
  • [25] On the Sum of the Powers of Distance Signless Laplacian Eigenvalues of Graphs
    S. Pirzada
    Hilal A. Ganie
    A. Alhevaz
    M. Baghipur
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1143 - 1163
  • [26] Proof of conjectures on the distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 100 - 115
  • [27] Correction to: Bounds on Signless Laplacian Eigenvalues of Hamiltonian Graphs
    Milica Anđelić
    Tamara Koledin
    Zoran Stanić
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 1551 - 1552
  • [28] Notes on the sum of powers of the signless Laplacian eigenvalues of graphs
    You, Lihua
    Yang, Jieshan
    ARS COMBINATORIA, 2014, 117 : 85 - 94
  • [29] On eigenvalues of the reciprocal distance signless Laplacian matrix of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Alizadeh, Yaser
    Pirzada, Shariefuddin
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (10)
  • [30] ON THE SUM OF THE POWERS OF DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS
    Pirzada, S.
    Ganie, Hilal A.
    Alhevaz, A.
    Baghipur, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 1143 - 1163